安承悦读

常见语义分割方法总结(通用5篇)

admin
导读 深度学习极大地简化了语义分割的流程(pipeline),并得到了较高质量的分割结果2.中分辨率和高分辨率的分支进行粗糙预测的恢复和细化,图2中部和底部分支,获得高质量的分割。该文构建了一个实时语义分割框架,通过不同的编码解码框架,提供了几个例子编码器,包括VGG16, Resnet18, Mobil

常见语义分割方法总结 第1篇

CRFs 是一类用于结构化预测的统计建模方法. 不同于分类算法,CRFs 在进行预测前,会考虑像素的邻近信息(neighboring context),如像素间的关系. 这使得 CRFs 成为语义分割的理想候选者. 这里介绍下 CRFs 在语义分割中的应用.

图像中的每个像素都是与有限的可能状态集相关. 在语义分割中,target 类别标签就是可能状态集. 将一个状态(或,label u) 分配给的单个像素 x 的成本(cost) 被称为一元成本(unary cost). 为了对像素间的关系进行建模, 还进一步考虑将一对标签(labels (u, v)) 分配给一对像素 (x, y),其被成为成对成本(pairwise cost). 可以采用直接相邻的像素对作为像素对(Grid CRF);也可以采用图像中所有的像素构建像素对(Denser CRF)。

图像中所有 unary cost 和 pairwise cost 的相加和作为 CRF 的能量函数(或损失函数,loss). 求解最小化即可得到较好的分割输出。

深度学习极大地简化了语义分割的流程(pipeline),并得到了较高质量的分割结果

常见语义分割方法总结 第2篇

《Speeding up Semantic Segmentation for Autonomous Driving》

该架构包括ELU激活功能、一个类似挤压式的编码器、随后的并行扩展卷积以及一个具有类似于sharpmask的细分模块的解码器

译文:该编码器是一个改进的SqueezeNet 架构,它被设计为一个低延迟的网络,用于图像识别,同时保持AlexNet的准确性。

实验结果:

常见语义分割方法总结 第3篇

《A Comparative Study of Real-time Semantic Segmentation for Autonomous Driving》

该文构建了一个实时语义分割框架,通过不同的编码解码框架,提供了几个例子编码器,包括VGG16, Resnet18, MobileNet,和ShuffleNet和解码器,包括SkipNet, UNet和膨胀前端。该框架是可扩展的,可以添加新的编码器和解码器。语义分割方法的分类:

【2】高效的语义分割CNN设计技术分析

《Analysis of efficient CNN design techniques for semantic segmentation》

常见语义分割方法总结 第4篇

《Efficient ConvNet for Real-time Semantic Segmentation》

Efficient ConvNet模型整体结构遵循编码-解码结构,

详细构造如下表:

整个模型包含23层,其中1-16层为Encoder,17-23层为Decoder。编码部分包含1、2、8层的下采样过程,以及余下层的Non-bt-1D提取特征。其中Non-bt-1D、Downsample构造如下:

实验结果:

常见语义分割方法总结 第5篇

《ICNet for Real-Time Semantic Segmentation on High-Resolution Images》

使用了级联的图像输入(即低、中、高分辨率图像),采用了级联的特征融合单元,训练时使用了级联的标签监督。

ICNet包括三个分支:

1.低分辨率分支来获取语义信息,将原图1/4大小的图像输入到PSPNet中,降采样率为8,产生了原图1/32的特征图。

2.中分辨率和高分辨率的分支进行粗糙预测的恢复和细化,图2中部和底部分支,获得高质量的分割。

3.高分辨率分支采用轻加权的CNNs(绿色虚线框,底部分支和中部分支);不同分支输出的特征图采用级联特征融合单元进行融合,训练时接受梯级标签监督。