数学经典公式定理总结 第1篇
学习目标:
(1) 知识与技能 :
掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法 :
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习
二.回顾课本
1、三角形的内角和是多少度?你是怎样知道的?
2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的步骤
①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
①平角,②两平行线间的'同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?
① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE∥AB
③ 如图2,过A作DE∥AB
④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习
四、学习小结:
(回顾一下这一节所学的,看看你学会了吗?)
五、达标检测:
六、布置作业
数学经典公式定理总结 第2篇
向量证明正弦定理
表述:设三面角∠P—ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。
1证明2全向量证明
过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。
全向量证明
如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°—A,j与向量CB的夹角为90°—C
由图1,AC+CB=AB(向量符号打不出)
在向量等式两边同乘向量j,得·
j·AC+CB=j·AB
∴│j││AC│cos90°+│j││CB│cos(90°—C)
=│j││AB│cos(90°—A)
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
2步骤1
记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180—(C—90))+b·0+c·cos(90—A)
=—asinC+csinA=0
接着得到正弦定理
步骤2、
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3、
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O、
作直径BD交⊙O于D、连接DA、
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C、
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
3用向量叉乘表示面积则s = CB叉乘CA = AC叉乘AB
=> absinC = bcsinA (这部可以直接出来哈哈,不过为了符合向量的做法)
=> a/sinA = c/sinC
20xx—7—18 17:16 jinren92 |三级
记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2、在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,
4过三角形ABC的顶点A作BC边上的高,垂足为D、(1)当D落在边BC上时,向量AB与向量AD的夹角为90°—B,向量AC与向量AD的夹角为90°—C,由于向量AB、向量AC在向量AD方向上的.射影相等,有数量积的几何意义可知向量AB—向量AD=向量AC—向量AD即向量AB的绝对值—向量AD的绝对值—COS(90°—B)=向量的AC绝对值—向量AD的绝对值—cos(90°—C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得
数学经典公式定理总结 第3篇
复习第一步::
勾股定理的有关计算
例1:(20xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.
析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6
勾股定理解实际问题
例2.(20xx年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.
析解:彩旗自然下垂的长度就是矩形DCEF
的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂时的'最低处离地面的最小高度h为70cm
与展开图有关的计算
例3、(20xx年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.
析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.
在矩形ACC’A’中,因为AC=2,CC’=1
所以由勾股定理得AC’=.
∴从顶点A到顶点C’的最短距离为
复习第二步:
1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.
例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.
错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.
正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2
例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是
错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25
剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.
正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.
温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.
例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.
错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形
数学经典公式定理总结 第4篇
一、教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.
2.探究勾股定理的逆定理的证明方法.
3.理解原命题、逆命题、逆定理的概念及关系.
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明.
2.难点:勾股定理的逆定理的证明.
3.难点的突破方法:
先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
为学生搭好台阶,扫清障碍.
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
三、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.
四、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行.
⑵如果两个实数的平方相等,那么两个实数平方相等.
⑶线段垂直平分线上的点到线段两端点的距离相等.
⑷直角三角形中30°角所对的直角边等于斜边的一半.
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.
⑵理顺他们之间的.关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.
解略.
本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系.
例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
证明略.
通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维.
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求证:∠C=90°.
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.
本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
数学经典公式定理总结 第5篇
重点、难点分析
本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.
本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.
教法建议:
本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:
(1)让学生主动提出问题
利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.
(2)让学生自己解决问题
判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.
(3)通过实际问题的解决,培养学生的数学意识.
教学目标:
1、知识目标:
(1)理解并会证明勾股定理的逆定理;
(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数.
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的`纵横迁移感受数学的辩证特征.
教学重点:勾股定理的逆定理及其应用
教学难点:勾股定理的逆定理及其应用
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习(投影)
勾股定理的内容
文字叙述(投影显示)
符号表述
图形(画在黑板上)
2、逆定理的获得
(1)让学生用文字语言将上述定理的逆命题表述出来
(2)学生自己证明
逆定理:如果三角形的三边长 有下面关系:
那么这个三角形是直角三角形
强调说明:(1)勾股定理及其逆定理的区别
勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.
(2)判定直角三角形的方法:
①角为 、②垂直、③勾股定理的逆定理
2、 定理的应用(投影显示题目上)
例1 如果一个三角形的三边长分别为
则这三角形是直角三角形
例2 如图,已知:CD⊥AB于D,且有
求证:△ACB为直角三角形。
以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)
4、课堂小结:
(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)
(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
5、布置作业:
a、书面作业P131#9
b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8
求证:△DEF是等腰三角形
数学经典公式定理总结 第6篇
一、利用勾股定理进行计算
1.求面积
例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。
析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形_三线合一_性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为×BC×AD=×16×6=48cm2。
2.求边长
例2:如图2,在△ABC中,∠C=135?,BC=,AC=2,试求AB的长。
析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的'转化思想,请同学们要留心。
二、利用勾股定理的逆定理判断直角三角形
例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。
析解:由于所给条件是关于a,b,c的一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
点评:用代数方法来研究几何问题是勾股定理的逆定理的_数形结合思想_的重要体现。
三、利用勾股定理说明线段平方和、差之间的关系
例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2-AE2。
析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。