七下几何总结 第1篇
初一数学下册期末考试知识点总结一(苏教版)
第七章 平面图形的认识(二) 1
第八章 幂的运算 2
第九章 整式的乘法与因式分解 3
第十章 二元一次方程组 4
第十一章 一元一次不等式 4
第十二章 证明 9
第七章 平面图形的认识(二)
一、知识点:
1、“三线八角”
① 如何由线找角:一看线,二看型。
同位角是“F”型;
内错角是“Z”型;
同旁内角是“U”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:
判定定理 性质定理
条件 结论 条件 结论
同位角相等 两直线平行 两直线平行 同位角相等
内错角相等 两直线平行 两直线平行 内错角相等
同旁内角互补 两直线平行 两直线平行 同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的任意两边之和大于第三边;
三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,
6、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;
直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)180°;
任意多边形的外角和等于360°。
第八章 幂的运算
幂(p5
七下几何总结 第2篇
转眼之间,一个学期已到尾声,细细回顾,七年级数学备课组在学校领导们的高度重视和大力支持下,在全组教师共同努力下,我们取得了一定的成绩,受到领导与老师们的.一致肯定。下面就具体谈谈一学期来的一些工作成绩。
一、认真做好教学工作
教学目标明确。为了让学生尽快适应初中阶段的学习,备课组统一认识,日常教学要注重兴趣的激发、方法的指导、知识点的落实。通过一个学期的训练,学生在解题能力、解题思路方面都得到了长足的进步。
复习有条有理。初一的课程骤然增多,为了让学生充足的时间复习,我们在第17周就结束了新课。根据以往的复习经验,分单元、分知识点进行系统复习。在单元复习中落实知识点、加强能力训练、渗透解题技巧、养成良好的书写习惯。从目前两周的复习情况来看,学生的书写习惯良好,审题能力有所增强,复习目的比较明确。
二、积极参与课改
一方面备课组按时开展研讨活动。开学之初,备课组召开了会议,布置了有关事项,按照学校要求将新老教师结对。之后的每次集体备课,都组织新教师谈自己的设想和困惑,发动老教师谈自己的做法和建议。这样的举措,意在让老教师从新教师身上获得新的启示,让新教师从老教师身上学习好的方法。
为了推进七年级数学教学,备课组开展听评课活动,组员统一思想,互帮互助,关系融洽。即听即评,不留情面,不拖拖拉拉,注重实效。每位老师的教学水平明显提升。
另一方面,本学期学校全面铺开课改,备课组积极响应,一方面迅速制定、印发教学案,一方面迅速改变上课模式,坚持“模块导学,教学合一”教学模式。学生的学习积极性空前高涨,但在组织课堂,激发学生兴趣方面还有待加强。
三、强化训练,提高成绩
为了提高学生的学习成绩,我们实行了集体备课研讨重、难点,讨论教法,分析和总结学生的认知规律,按照估计的学生总体的平均接受水平来设计课堂,以单元检测为评价和反馈方式,采取引导——激励——尝试——提高的结构评价,每次检测时,以第一次检查时结果为学生的标准起点,让学习还不是很扎实的同学,准备3—5天,然后再进行补偿检查,这样,在心理上消除了学生对检测的恐惧,激发起学生不服输的愿望,和别人比较,和自己的过去比较,学生不再厌烦第二次检测,而是向往和急切期盼,从而达到了我们的预期效果。
总之,在过去的一学期中,我们收获了不少,但也有许多不足,如后进生转化一直比较缓慢,过程性评价缺乏必要的现实环境、学生厌学的现象还不同程度的存在,随着学生认知的变化,课堂组织的模式也要不断的更新的有关探索还不是很到位等等,我们将在以后的实践中,创造性的继续探索、解决。
七下几何总结 第3篇
一学期来,担任七年级的数学教学,顺利完成教育教学任务。为使今后的工作取得更大的进步,现对教学工作做出总结:
一、坚持认真备课,备课中我不仅备学生而且备教材备教法。
根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学反思。
二、努力增强我的上课技能,提高教学质量,使讲解清晰化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。
在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在学生普遍反映喜欢上数学课,就连以前极讨厌数学的学生都乐于上课了。
三、与同事交流,虚心请教其他老师。
在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
四、完善批改作业:
布置作业做到精读精练。有针对性,有层次性。
五、做好课后辅导工作,注意分层教学。
六、积极推进素质教育。
新课改提了的,要以提高学生素质教育为主导思想,为此,我在教学工作中并非只是传授知识,而是注意了学生能力的培养,把传授知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
七、工作中存在的问题:教材挖掘不深入。
教法不灵活,不能吸引学生学习,对学生的引导、启发不足。新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。教学反思不够。
八、今后努力的方向:
加强学习,学习新课标下新的教学思想。学习新课标,挖掘教材,进一步把握知识点和考点。多听课,学习同科目教师先进的教学方法的教学理念。加强转差培优力度。加强教学反思,加大教学投入。
在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量
七下几何总结 第4篇
初一下册知识点总结
1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4.零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的.数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
10.合并同类项法则:系数相加,字母与字母的指数不变。
11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
平面几何部分
1、补角重要性质:同角或等角的补角相等.
余角重要性质:同角或等角的余角相等.
2、①直线公理:过两点有且只有一条直线.
线段公理:两点之间线段最短.
②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.
比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.
3、三角形的内角和等于180
三角形的一个外角等于与它不相邻的两个内角的和
三角形的一个外角大于与它不相邻的任何一个内角
4、n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形
5、n边形的内角和公式:180(n-2); 多边形的外角和等于360
6、判断三条线段能否组成三角形:
①a+b>c(a b为最短的两条线段)②a-b
7、第三边取值范围:
a-b< c
8、对应周长取值范围:
若两边分别为a,b则周长的取值范围是 2a
如两边分别为5和7则周长的取值范围是 14
9、相关命题:
(1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
(2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。
(3)任意一个三角形两角平分线的夹角=90+第三角的一半。
(4) 钝角三角形有两条高在外部。
(5) 全等图形的大小(面积、周长)、形状都相同。
(6) 面积相等的两个三角形不一定是全等图形。
(7) 三角形具有稳定性。
(8) 角平分线到角的两边距离相等。
(9)有一个角是60的等腰三角形是等边三角形。
七下几何总结 第5篇
本章重点:一元一次不等式的解法,
本章难点:了解不等式的解集和不等式组的解集的确定,正确运用不等式基本性质3。
本章关键:彻底弄清不等式和等式的基本性质的区别.
(1)不等式概念:用不等号(“≠”、“”)表示的不等关系的式子叫做不等式(2)不等式的基本性质,它是解不等式的理论依据.
(3)分清不等式的解集和解不等式是两个完全不同的概念.(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心
(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集
(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成(8).利用数轴确定一元一次不等式组的解集第六章:
1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.
2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.
3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.本章的重点是:二元一次方程组的解法代入法,加减法以及列一次方程组解简单的应用问题.
本章的难点是:
1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;2.正确地找出应用题中的相等关系,列出一次方程组.第七章
本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.
2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.
3.乘法公式的推导过程,能灵活运用乘法公式进行计算.4.熟练地运用运算律、运算法则进行运算,
5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.第八章:
1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理
2、定义、命题、公理、定理3、简单几何图形中的推理4、余角、补交、对顶角5、平行线的判定判定:一个公理两个定理。
公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)定理:内错角相等(数量关系)两直线平行(位置关系)定理:同旁内角互补(数量关系)两直线平行(位置关系).平行线的性质:
两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补
由图形的“位置关系”确定“数量关系”第九章:
重点:因式分解的方法,
难点:分析多项式的特点,选择适合的分解方法1.因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)3.运用因式分解解决一些实际问题.(包括图形习题)第十章:
重点是:用统计知识解决现实生活中的实际问题.难点是:用统计知识解决实际问题.
1.统计初步的基本知识,平均数、中位数、众数等的计算、2.了解数据的收集与整理、绘画三种统计图.
3.应用统计知识解决实际问题能解决与统计相关的综合问题.
七下几何总结 第6篇
一、知识梳理
知识点1:正、负数的概念:我们把像3、2、+、这样的数叫做正数,它们都是比0大的数;像-3、-2、、这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
七下几何总结 第7篇
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列
易解”;
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不
博源教育曾老师1378780036612
等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0,(a≠0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质
3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;
注意:ab>0
abab0a0b0或a0b0;
amamab<0
0a0b0或a0b0;ab=0a=0或b=0;a=m.
7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.
8.一元一次不等式组的解集的四种类型:设a>b
xaxb不等式组的解集xaxb是xa不等式的组解集是xbba>ba>xaxb不等式组的解集是axbxaxb不等式组解集是空集ba>xy0x、y是正数xy0ba>,
9.几个重要的判断:,
xy0x、y是负数xy0xy0x、y异号且正数绝对值大,xy0-2-
xy0x、y异号且负数绝对值大xy0.博源教育曾老师1378780036613
整式的乘除
1.同底数幂的乘法:aman=am+n,底数不变,指数相加.
2.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:
(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:
①(a+b)=a+2ab+b,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:
p(1)若二次三项式x+px+q是完全平方式,则有关系式:22
222
2q;
(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax+bx+c值的符号;②当x=h时,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22
1x21xx22.
8.同底数幂的除法:am÷an=am-n,底数不变,指数相减.9.零指数与负指数公式:
(1)a0=1(a≠0);a-n=1an,(a≠0).注意:00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:×10-5.
10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.
11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线
几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
1.角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)OA几何表达式举例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分线2.线段中点的定义:几何表达式举例:(1)∵C是AB中点∴AC=BCCB点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)A(2)∵AC=BC∴C是AB中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.几何表达式举例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC
博源教育曾老师137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代换:几何表达式举例:∵a=cb=c∴a=b5.补角重要性质:同角或等角的补角相等.(如图)13几何表达式举例:∵a=cb=d又∵c=d∴a=b几何表达式举例:∵a=c+db=c+d∴a=b几何表达式举例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图)几何表达式举例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老师1378780036616∴∠1=∠27.对顶角性质定理:对顶角相等.(如图)CAOBD几何表达式举例:∵∠AOC=∠DOB∴8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)AC几何表达式举例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)ACEBDF几何表达式举例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图)(2)若内错角相等,两条直线平行;(如图)
几何表达式举例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老师1378780036617(3)若同旁内角互补,两条直线平行.(如图)11.平行线性质定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD几何表达式举例:(1)∵AB∥CD(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:
直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二定理:
1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.
3.有关垂线的定理:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行
三公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常识:
1.定义有双向性,定理没有.
2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.
3.命题可以写为“如果那么”的形式,“如果”是命题的条件,“那么”是命题的结论.
4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数.
6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角:
七下几何总结 第8篇
在本期的教学工作中,我认真履行职责,对待工作一丝不苟,勤恳踏实,认真备课,认真上课,认真批改作业,认真辅导学生,认真对待每一次单元测试和学校组织的期中、期末测试,积极学习同行上课的优点,改进自身不足,强化上课的技能提升,较好地完成了任务,现将一年来的工作总结如下:
一、强化“教学六认真”,从基础做起
七年级是学生的起始阶段,为了给学生一个良好的学习基础,我从现阶段开始强化学生的数学学习基础。上课前,查阅资料、网上听课,争取做好上课前的准备工作;课堂上以培养学生课前准备习惯、积极思考习惯、动口动手动脑的习惯,以养成教育为主,以课堂思考为核心建立学生学习数学的模型,通过学生主动认知、自主研讨,对课堂知识进行分解,重难点知识化为学生自主探索的结果,教师主要起引导、协调作用,充分体现学生的主体地位,针对学生存在疑惑的知识点我做到备课时首先思考到,课堂中尽量以此提出问题,让学生分析,最后师生一起得到结论,充分改变传统教育中的“灌输式”教育法,将知识的获取交给学生自己,解决老师常讲的题型学生却做不来的疑惑。
二、加强学习,提升教育教学理念
时代在不断进步,我们不能以原来的眼光对待眼前的学生,固步自封对于教育教学是行不通的,我们只有时时学习先进的教学理念,并在教学中不断强化新理念,才能适应社会对教育的要求。一是通过听、评、议课活动向同行学习。三人行必有我师焉,土专家未必不如洋专家,适合自己的才是最好的。在教学中,每个人有每个人的风格和特点,不能依葫芦画瓢,更不能死搬硬套,需要我们将所学习到的别人的优点内化为适合自己的特点,这种特点的增多,我们的教学风格就逐渐形成了。二是学习教育理论专著和报刊杂志等,学校订阅了数学教学方面的专刊,我经常阅读,通过阅读向全国各地的`教育专家、学者学习,也能开阔眼界,避免固步自封、吃老本。三是学习哲学方面的书籍,如《苏菲的世界》,逐渐学会用哲学的眼光来看待自己的教育教学和国家的教育发展方向,与时俱进。
通过认真教学和学习,本期我所任教的班级学生的数学能力在大步前行,成绩也逐渐提高。当然我通过反思,在教学中我也有很多缺点和不足,如对学生的反馈情况了解不及时,与学生的个别交流很少等,在下期的教学中不断改进,希望能取得更好的成绩。
七下几何总结 第9篇
第一章有理数
1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)
4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:
①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数
8、表示数a的点到原点的距离称为数a的绝对值
9、绝对值的三句:正数的绝对值是它本身,
负数的绝对值是它的相反数,
0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)
12、乘除:同号得正,异号的负
13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数)
17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;
几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.
5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
初一数学二单元知识点归纳
(一)正负数
1.正数:大于0的数。
2.负数:小于0的数。
即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(?b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba
4.乘法结合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
七下几何总结 第10篇
溶液的*碱*与*碱度的测定
1、指示剂———溶液的*碱*紫*的石蕊试液遇**溶液变红;遇碱*溶液变蓝无*的*酞试液只遇碱溶液变红注:不溶*碱与指示剂无作用碱*溶液不一定是碱的溶液(特例:碳**的水溶液显碱*)
2、ph值———溶液的*碱度ph>7溶液为**(越小**越强)ph=7溶液为中*ph<7溶液为碱*(越大碱*越强)
七、离子的检验
cl-(在溶液中)———在被测溶液中加入**银溶液,如果生成不溶于**的白*沉淀,则原被测液中含*离子。
so42-(在溶液中)———在被测溶液中加入*化钡(或**钡、或*氧化钡)溶液,如果生成不溶于**(或盐*)的白*沉淀,则原被测液中含硫*根离子。
co32-(1)(固体或溶液)———在被测物质中加入稀*溶液,如果产生能使澄清石灰水变浑浊的气体,则原被测物质中含碳*根离子。
(2)(在溶液中)———在被测溶液中加入*化钡或**银溶液,如果产生能溶于**的白*沉淀,且同时生成能使澄清的石灰水变浑浊的气体,则原被测溶液中含碳*根离子。
注:1、在鉴别cl-和so42-时,用*化钡溶液,不要用**银溶液,这是因为硫*银为微溶*物质,使鉴别现象不明显。
2、在一未知溶液中加入*化钡溶液,若产生不溶于**的白*沉淀,则原被测液中可能含银离子也可能含硫*根离子。
*、碱、盐的特*
1、浓盐*———有挥发*、有刺激*气味、在空气中能形成*雾。
2、浓**———有挥发*、有刺激*气味、在空气中能形成*雾,有强氧化*。
3、浓硫*———无挥发*。粘稠的油状液体。有很强的吸水*和脱水*,溶水时能放
出大量的热。有强氧化*。
4、*氧化钙———白*粉末、微溶于水。
5、*氧化*———白*固体、易潮解,溶水时放大量热。能与空气中的二氧化碳反应而变质。
6、硫*铜———白*粉末、溶于水后得蓝*溶液(从该溶液中析出的蓝*晶体为五水合硫*铜cuso4·5h2o)。
7、碳**———白*粉末,水溶液为碱*溶液(从溶液中析出的白*晶体为碳**晶体na2co3·10h2o)
8、氨水(nh3·h2o)———属于碱的溶液
*与碱的通*和盐的*质
1、*的通*
(1)*溶液能使紫*的石蕊试液变红,不能使无*的*酞试液变*。
(2)*能与活泼金属反应生成盐和*气
(3)*能与碱*氧化物反应生成盐和水
(4)*能与碱反应生成盐和水(5)*能与某些盐反应生成新的盐和新的*
2、碱的通*
(1)碱溶液能使紫*的石蕊试液变蓝,并能使无*的*酞试液变红*
(2)碱能与**氧化物反应生成盐和水
(3)碱能与*反应生成盐和水
(4)某些碱能与某些盐反应生成新的盐和新的碱
3、盐的*质
(1)某些盐能与较活泼的金属反应生成新的盐和金属
(2)某些盐能与*反应生成新的盐和新的*
(3)某些盐能与某些碱反应生成新的盐和新的碱
(4)有些不同的盐之间能反应生成两种新的盐
常见物质的颜*
(一)、固体的颜*
1、红*固体:铜,氧化铁
2、绿*固体:碱式碳*铜
3、蓝*固体:*氧化铜,硫*铜晶体
4、紫黑*固体:高锰*钾
5、淡黄*固体:硫磺
6、无*固体:*,干*,金刚石
7、银白*固体:银,铁,镁,铝,*等金属
8、黑*固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活*炭)
9、红褐*固体:*氧化铁
10、白*固体:*化*,碳**,*氧化*,*氧化钙,碳*钙,氧化钙,硫*铜,五氧化二*,氧化镁
(二)、液体的颜*
11、无*液体:水,双氧水
12、蓝*溶液:硫*铜溶液,*化铜溶液,**铜溶液
13、浅绿*溶液:硫*亚铁溶液,*化亚铁溶液,**亚铁溶液
14、黄*溶液:硫*铁溶液,*化铁溶液,**铁溶液
15、紫红*溶液:高锰*钾溶液
16、紫*溶液:石蕊溶液
(三)、气体的颜*
17、红棕*气体:二氧化氮
18、黄绿*气体:*气
19、无*气体:氧气,氮气,*气,二氧化碳,一氧化碳,二氧化硫,*化*等气体。
一、水的组成
1、电解水实验:电解水是在直流电的作用下,发生了化学反应。水分子分解成*原子和氧原子,这两种原子分别两两构成成*分子、氧分子,很多*分子,氧分子聚集成*气、氧气。
2、一正氧、二负*实验现象表达式电解水验电极上有气泡,正负极气体体积比为1:2.负极气体可燃烧,正极气体能使带火星的木条复燃。
氧气+*气(分解反应)2h2o通电2h2↑+o2↑
3、水的组成:水是纯净物,是一种化合物。从宏观分析,水是由*、氧元素组成的,水是化合物。从微观分析,水是由水分子构成的,水分子是由*原子、氧原子构成的。
4、水的*质
(1)物理*质:无*无味、没有味道的液体,沸点是100℃,凝固点是0℃,密度为1g/cm3,能溶解多种物质形成溶液。
(2)化学*质:水在通电的条件下可分解为*气和氧气,水还可以与许多单质(金属、非金属)、氧化物(金属氧化物、非金属氧化物)、盐等多种物质反应。
二、*气
1、物理*质:无*无味的气体,难溶于水,密度比空气小,是相同条件下密度最小的气体。
2、化学*质——可燃*。
在空气(或氧气)中燃烧时放出大量的热,火焰呈淡蓝*,唯一的生成物是水。
注意:*气与空气(或氧气)的混合气体遇明火可能发生*,因此点燃*气前,一定要先验纯。(验纯的方法:收集一试管的*气,用拇指堵住试管口,瓶口向下移进酒精灯火焰,松开拇指点火,若发出尖锐的爆鸣声表明*气不纯,需再收集,再检验;声音很小则表示*气较纯。)
三、分子
1、定义:分子是保持物质化学*质的最小粒子。
2、分子的特征:
(1)分子很小,质量和体积都很小(2)分子总是在不停地运动着,并且温度越高,分子的能量越大,运动速度也就越快。
(3)分子间有作用力和间隔。不同的液体混合后的总体积通常不等于几种液体的体积简单相加,就是因为分子间有一定的作用力和间隔。(热胀冷缩)
3、解释在日常生活中,遇到的这些现象::
a:路过酒厂门口,并未喝酒,却能闻到酒的香味?
b:在*厂工作,虽不会吸*,身上却有一身*味?
c:衣服洗过以后,经过晾晒,湿衣变干。那么,水到那里去了?
d:糖放在水中,渐渐消失,但水却有了甜味。为什么?
e:半杯酒精倒入半杯水中,却不满一杯。怎么回事?
四、原子
1、定义:原子是化学变化中的最小粒子
2、化学变化的实质:分子的分化和原子的重新组合。
3、分子与原子的比较
五、物质的分类、组成、构成
1、物质由元素组成
2、构成物质的微粒有:分子、原子、离子
3、物质的分类单质纯净物化合物混合物
六、水的净化
1、水的净化(1)、加入絮凝剂吸附杂质(吸附沉淀)(2)、过滤(3)、消毒(加*气或一氧化二*)
2、活*炭的净水作用:具有多孔结构,对气体、蒸气或胶状固体具有强大的吸附能力。可以吸附*素而使液体变无*,也可以除臭味。
3、硬水和软水
(1)区别:水中含有可溶*钙、镁化合物的多少。
(2)硬水的软化方法:煮沸或蒸馏
1.初中化学基础知识点的汇总
2.初中化学必备基本知识点归纳
3.初三化学全册知识点归纳
4.初三化学知识点的最全总结介绍
5.初中九年级化学基础知识总结
6.九年级上册化学基础知识点总结
七下几何总结 第11篇
有理数:
(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.
七下几何总结 第12篇
正数与负数
在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rationalnumber)。
通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
七下几何总结 第13篇
本学期,为适应新时期教学工作的要求,从各方面严格要求自己,认真钻研新课标理念,改善教法,认真对待工作中的每一个细节,用心向其他教师请教教学中出现的问题,结合本校的实际条件和学生的实际状况,勤勤恳恳,兢兢业业,使教学工作有计划、有组织、有步骤地开展。为总结过去,挑战明天,更好的干好今后的工作,现将本学期本人的教学工作做一简要小结:
本学期本人始终拥护国家的教育方针、政策,始终拥护国家目前进行的新课程改革,始终坚持教育的全面性和终身性发展。热爱教育事业,热爱自己所教育的每一个学生。严格遵守学校的各项规章制度,不迟到早退,用心参加各项活动及学习,团结同志,用心协调工作中的各个方面。
我在教学中的主要环节是以下几个方面:
做好课前准备工作
除认真钻研教材,研究教材的重点、难点、关键,吃透教材外。还深入了解学生,根据不同类型的学生拟定了课堂上的辅导教学方案,使课堂教学中的辅导有针对性,避免盲目性,提高了实效。
增强上课技能,提高教学质量,使讲解清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。
在课堂上个性注意调动学生的用心性,加强师生交流,充分体现学生的主观能动作用,让学生学的容易,学得简单,学得愉快;注意精讲精练,在课堂上,老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分思考每一个层次学生的学习需求和学习潜力,让各个层次的学生都得到提高。
虚心请教其他老师
在教学上,有疑必问。在各个章节的学习上都用心征求其他老师的意见,学习他们的方法,同时,多听优秀老师的课,学习别人的优点,克服自己的不足,征求他们的意见,改善工作。
认真批改作业,布置作业做到精读精练。有针对性,有层次性。
在设置作业的过程中,仔细阅读教材,搜集资料,对各种辅助资料进行筛选。力求每一次练习都起到最大效果。同时对学生的作业批改及时、认真,分析并记录学生的作业状况,将他们在作业过程中出现的问题做出及时反馈,针对作业中的问题确定个别辅导的学生,并对他们进行及时的辅导。
做好课后辅导工作,注意分层教学。
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导并不限于学习知识性的辅导,更重要是学习思想的辅导,要提高后进生的成绩。
经过一个学期的努力,一部分同学的成绩有所提高,在本学期中期考试中,我所任教的两个班级也取得了较好的成绩,存在不足的是,学生的知识结构还不是很完整,还必须进行加强训练。
七下几何总结 第14篇
第一章:丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体
①几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
②点动成线,线动成面,面动成体。
3、生活中的立体图形
生活中的立体图形(按名称分)
①圆柱
②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
①圆锥
②棱锥
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:
11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)
6、截一个正方体:
用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图:
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章:有理数及其运算
1、有理数的分类
①正有理数
有理数{ ②零
③负有理数
有理数{ ①整数
②分数
2、相反数:
只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。
5、绝对值:
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;
若|a|=-a,则a≤0。
正数的绝对值是它本身;
负数的绝对值是它的相反数;
0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:
正数大于0,负数小于0,正数大于负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
7、有理数的运算:
①五种运算:加、减、乘、除、乘方
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;
绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:
减去一个数,等于加上这个数的相反数!
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
有理数除法法则:
两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
注意:0不能作除数。
有理数的乘方:求n个相同因数a的积的运算叫做乘方。
正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
②有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
③运算律(5种)
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
8、科学记数法
一般地,一个大于10的数可以表示成a×
10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)
第三章:整式及其加减
1、代数式
用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:
①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数。
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。
2、整式:单项式和多项式统称为整式。
①单项式:
都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:
单独的一个数或一个字母也是单项式;
单独一个非零数的次数是0;
当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。
②多项式:
几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
③同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:
①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
4、合并同类项法则:
把同类项的系数相加,字母和字母的指数不变。
5、去括号法则
①根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。
②根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。
6、添括号法则
添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章基本平面图形
1、线段、射线、直线
表示方法
直线AB(或BA)
直线l
无端点
无法度量
射线OM
无法度量
线段AB(或BA)
线段l
可度量长度
2、直线的性质
①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)
②过一点的直线有无数条。
③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
3、线段的性质
①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)
②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
③线段的大小关系和它们的长度的大小关系是一致的。
4、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
6、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
7、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
8、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
9、角的性质
①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
②角的大小可以度量,可以比较,角可以参与运算。
10、平角和周角:
一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、多边形:
由若干条不在同一条直线上的线段首尾顺次相连组成的'封闭平面图形叫做多边形。
连接不相邻两个顶点的.线段叫做多边形的对角线。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。
12、圆:
平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。
固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;
由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
第五章一元一次方程
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
5、移项:
把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。
6、解一元一次方程的一般步骤:
①去分母
②去括号
③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)
④合并同类项
⑤将未知数的系数化为1
第六章数据的收集与整理
1、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。
其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图
扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)
3、频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
七下几何总结 第15篇
知识点、概念总结
1.不等式:用符号_<_,_>_,_≤_,_≥_表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号_>_,_<_连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)_≥_,_≤_连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)
(2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性质: (1)如果x>y,那么yy;(对称性) (2)如果x>y,y>z;那么x>z;(传递性) (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数) 8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般顺序: (1)去分母(运用不等式性质2、3) (2)去括号 (3)移项(运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1(运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10.一元一次不等式与一次函数的综合运用: 一般先求出函数表达式,再化简不等式求解。 11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 12.解一元一次不等式组的步骤: (1)求出每个不等式的解集; (2)求出每个不等式的解集的公共部分;(一般利用数轴) (3)用代数符号语言来表示公共部分。(也可以说成是下结论) 13.解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式组的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式组的解集是X<-6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14.解不等式组的口诀 (1)同大取大 例如,x>2,x>3,不等式组的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式组的解集是X<2 (3)大小小大中间找 例如,x<2,x>1,不等式组的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式组无解 15.应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,根据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。 1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式) 2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。 3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要;如:电费、水费、出租车、商店优惠。 4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式、 单项式的系数:是指单项式中的数字因数;(不要漏负号和分母) 单项数的次数:是指单项式中所有字母的指数的和、(注意指数1) 5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式、特别注意多项式的项包括它前面的性质符号、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。 6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。 以上就是为大家整理的七年级上册数学代数式知识点整理:期末考试复习,大家还满意吗?希望对大家有所帮助! 数轴 1、数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不 可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。 2、数轴上的点与有理数的关系 ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数) 3、利用数轴表示两数大小 ⑴在数轴上数的大小比较,右边的数总比左边的数大; ⑵正数都大于0,负数都小于0,正数大于负数; ⑶两个负数比较,距离原点远的数比距离原点近的数小。 4、数轴上特殊的(小)数 ⑴最小的自然数是0,无的自然数; ⑵最小的正整数是1,无的正整数; ⑶的负整数是-1,无最小的负整数 5、a可以表示什么数 ⑴a>0表示a是正数;反之,a是正数,则a>0; ⑵a<0表示a是负数;反之,a是负数,则a<0 ⑶a=0表示a是0;反之,a是0,,则a=0 填空题答题技巧 要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。 对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。 解答题答题技巧 (1)仔细审题。注意题目中的关键词,准确理解考题要求。 (2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。 (3)给出结论。注意分类讨论的问题,最后要归纳结论。 (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。 本学期的工作即将结束,本期来在学校党、政、工的领导下,在广大教师的支持下,在工作中取得了较好的成绩,同时自身素质也得到了较大的提高,为了能更好地做好今后的工作,现将本期所作工作总结如下。 一学期来,本人认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,形成比较完整的知识结构,严格要求学生,尊重学生,发扬教学民主,使学生学有所得,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。开学时,任初一·五班班主任和初一年级二班的数学课教学工作。开学时,为了搞好新生工作,经常抽空与学生交谈,了解学生的情况,很快便与他们建立起了良好的师生关系。 初一学生刚从小学升入初中,要使学生逐渐习惯自学方法,除认真做好学生的思想教育工作,明确学习目的,端正学习态度外,要逐渐教会学生阅读、理解、掌握教材,在教材上作眉批,教会学生做练习和核对答案的方法和要求,并作出示范,在这一阶段中,我尽快认识、了解学生,掌握了学生的基本情况。 我在教学中的主要环节是以下几方面: 1、课前准备工作 认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。 除认真钻研教材、吃透教材外,还要深入了解学生,了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。这样能使课堂教学中的辅导有针对性,避免盲目性。 在了解学生的基础上考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。把教材和学生实际很好地结合起来,确定课堂上要讲的主要内容。 2、课堂工作 (1)首先搞好组织教学,这是顺利进行正常教学的保证。 新课程数学的组织教学与传统的组织教学有明显的不同,我们知道,组织教学的任务就是把全班学生的注意力自始至终组织到当堂课的学习任务上来。传统的课堂教学,更多地是教师将学生的.注意力集中在教师的讲授上,但是根据学生的年龄特征,一般地,初中学生,特别是低年级学生的注意力容易分散,注意的集中是相对的,分散是绝对的,因此,组织教学应贯穿于全部教学过程之中。 在组织教学中,教师要能真正起作用,达到目的,师生之间的感情因素非常重要,因此,教师的威信将起到较大作用。教师既要亲切又要严肃,要使课堂气氛活而不乱,尽量避免学生产生压抑和过度焦虑,使学生在和谐的气氛中发挥出正常的智力水平,高效地进行学习。 (2)其次是复习旧课,引入新课。根据学生掌握知识的情况以及涉及本课的有关知识进行复习,要简明扼要,抓住要点,点穿实质,然后,自然过渡,引入新课,简述学习课题,布置学习内容,明确学习要求,以保证教学过程的计划性和完整性。充分地照顾了学生学习上的差异,这样学生可以快者快学,慢者慢学,达到了班集体与个别化相结合。 (3)再次是学生根据教师要求独立进行学习活动。在理解教材内容的基础上做练习,及时反馈学习效果,自己不能解决的问题及时请教老师。 对于学习思维品质不踏实的学生,要注意用具体的事例,通过严格要求,逐渐培养他们的踏实品质;对于学习成绩优异者,应指导他们向深度、广度发展,向他们提出进一步深入学习的要求,并具体落实,让他们能够充分利用课堂上这段宝贵的时间,充分发挥其潜力,提高效率,超额超前完成学习任务,对于学习基础较差,思维不敏捷的学生,加强重点辅导。在这里教师掌握每个学生的情况和把握整个课堂,始终处于积极主动的状态非常重要。 3、课后辅导工作 要提高教学质量,还要做好课后辅导工作,初中的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作贯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上。 在辅导工作中,我善于根据学生的不同情况,设计不同的问题,采用不同的方式,主动地去引导、启发学生,可问他是怎样想的?怎样理解的?听一听他们的见解掌握他们的情况,并进行有针对性,切合实际的个别辅导,真正做到因材施教。这对于提高差生,大面积提高初中数学教学质量是会起到一定作用的。差生形成的原因虽然是多方西的,但是学生的学习基础,学习兴趣,学习动机,学习方法等方面是值得引起我们注意的问题。只要老师坚持不懈,会逐渐增强学生的学习兴趣,从而产生强烈的学习动机,不断地提高学习水平。 在教学教研上我积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。培养多种兴趣爱好,博览群书,不断拓宽知识面,为教学内容注入新鲜血液。 在工作中,坚持努力提高自己的思想政治水平和教学业务能力,新的时代,新的教育理念,教育也提出新的改革,新课程的实施,对我们教师的工作提出了更高的要求,我从各方面严格要求自己,努力提高自己的业务水平丰富知识面,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步不断努力,现对近年来教学工作作出总结,希望能发扬优点,克服不足,总结检验教训,继往开来,以促进教学工作更上一层楼。 一、坚持认真备课,备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。 二、努力增强我的上课技能,提高教学质量,使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在学生普遍反映喜欢上语文课,就连以前极讨厌语文的学生都乐于上课了。 三、与同事交流,虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。 四、完善批改作业:布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。 五、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。 六、积极推进素质教育。新课改提了的,要以提高学生素质教育为主导思想,为此,我在教学工作中并非只是传授知识,而是注意了学生能力的培养,把传授知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。在以后的教学中要多想其他有经验的老师多学习使自己早一日成为优秀的教育者。 1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。 2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。 3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是 邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角, 与互为邻补角。 + = 180°; + = 180°; + = 180°; + = 180°。 4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。 = ; 5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。如图2所示,当= 90°时,⊥ 。 垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 性质3:如图2所示,当a ⊥ b时,= = = = 90°。 点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。 6、同位角、内错角、同旁内角基本特征: ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样 的两个角叫同位角。图3中,共有对同位角:与是同位角; 与是同位角;与是同位角;与是同位角。 ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。 ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。 7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 平行线的性质: 性质1:两直线平行,同位角相等。如图4所示,如果a∥b, 则= ; = ; = ; = 。 性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则= ; = 。 性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+ = 180°; + = 180°。 性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。 8、平行线的判定: 判定1:同位角相等,两直线平行。如图5所示,如果= 或=或=或=,则a∥b。 判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b 。 判定3:同旁内角互补,两直线平行。如图5所示,如果+ = 180°; + = 180°,则a∥b。 判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。 9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。 10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。 平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。 平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。 本学期我担任七年级(2)、(3)班数学教学工作。转眼间一学期的教学工作已接近尾声,为了更好地做好今后的工作,总结经验,吸取教训,本人特就这学期的工作小结如下: 一、主要工作: 1、做好课前准备和课后反思工作。面对新的学生,我每天花很长时间认真阅读、挖掘、活用教材,研究教材的重点、难点、关键,研读新课标,明白这节课的新要求,思考如何将新理念融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法教学设计,根据这两班同学的具体情况制定课时计划。每一课都做好充分的准备。为了使学生易懂易掌握,我还根据教材制作各种利于吸引学生注意力的有趣教具,制作课件,课后及时对该课作出总结,写好教学后记,并进行阶段总结,即每章一总结,期中、期末一总结。 2、把好上课关,提高课堂教学效率、质量。新课标的数学课通常采用“问题情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上我想方设法创设能吸引学生注意的情境。在这一学期,我根据教学内容的实际创设情境,让学生一上课就感兴趣,每节课都有新鲜感。新课标倡导“自主、合 作、探究”的学习方式。我在课堂上常为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。由于学生乐学,兴致高昂,通常学生获得的知识都超过教材和我备课的范围。 3、虚心请教同组老师。在教学上,有疑必问。由于新课标教学经验不足,所以我的教学进度总是落在其他老师之后。我虚心向他们请教每节课的好做法和需要注意什么问题,结合他们的意见和自己的思考结果,总结出每课教学的经验和巧妙的方法。参与我们初一备课组集体备课2次,上集体备课的公开课一节(日历中的方程)。 4、做好“培优、辅中、补差”工作。根据本班学生学习数学的基础和潜力,我把他们分成三类:优生10人左右,中层生23人左右,待进生13人左右。利用每天午休辅导。除了老师辅导外,我还要求学生成立“数学学习互助小组”,即一名优生负责一至两名中层生和一名待进生,优生经常讨论学习问题,弄懂弄透了才去辅导其他同学。但是本学期由于时间关系,效果不佳。 二、存在问题和今后努力方向: 1、新课标学习与钻研还要加强; 2、课堂教学设计、研究、效果方面还要考虑; 3、多媒体技术在课堂教学中的使用还有待提高; 4、“培优、辅中、补差”的方法方式还有待完善。 初一数学月考小结 1.判断(1)绝对值相等的两个数的和为0 ( ) (2) 零减去一个数,仍得这个数. ( ) 2.把下列各数填入相应的集合中: +7,-9,1/3,,998,-9/10,0,-6,2/5,,20xx,-1/3,. 正数集合:﹛ ?﹜ 负数集合:﹛ ?﹜ 整数集合:﹛ ?﹜ 分数集合:﹛ ?﹜ 非正数集合:﹛ ?﹜ 非负整数集合:﹛ ?﹜ 正整数_________正分数3. 有理数的分类:有理数?________________ 负整数?_________负分数? 4.整数和分数合起来叫做______,正分数和负分数合起来叫做______. 5.表示数6的点到表示数-8的点的距离是_______个单位长度.数轴上与表示数2的点距离3个单位长度 的点所表示的数是__________. 的相反数是-3,则a= ; 7.(1)若 -(a-7)是负数,则a-7 0 (2)-(-5)的相反数是 ; (4) 是-(+6)的相反数; (3)+()是 的相反数; (5) 的相反数是。 8.数轴上,若点A和点B分别表示互为相反数的两个数,并且这两点的距离是,则这两点所表示的数 分别是 和 。 9.若m+2与互为相反数,则m= 。 10.(1)已知一个数加—和为—,则这个数为_____________. (2)已知b < 0,则a,a-b,a+b从大到小排列________________. (3)0减去a的相反数的差为_______________. (4)已知| a |=3,| b |=4,且a 11.若规定a?b?a?b?ab,则?2?3? ,1?(2?3)? . 12.若a的相反数是-3,b的绝对值是4,则a+b= 13. 若 | m |= 2, | n | =5 ,且m>n, 则m+n =___________ 14.若a,b互为倒数,则ab=_______________ 15.若a,b互为相反数,且a≠b,则a=_____________, b16. (?1) = ,-[+()]= 217.在张江高科技园区的上海超级计算中心内,被称为“神威1”的计算机运算速度为每秒384 000 000 000 次,这个速度用科学记数法表示为 。 18. 据统计,全球每小时约有510 000 000吨污水排入江河湖海,用科学记数法表示为 。 19.绝对值小于10的整数有____ 个,其中最小的一个是____ ;它们的和是 ,积 是 。 20.若|x|=x,则x__________; 若|-a|=6,那则a= ; 若-∣m∣=-5,则m= 。 若∣m-1∣=5,则m= 。 21.有理数a、b在数轴上的位置如图所示,则|a|=__________,|b|=________ 23100 22. (-1)+(-1)+(-1)+?+(-1)23. 如果一个数的平方数是其本身,那么这个数是__ _; 如果一个数的立方是其本身,那么这个数是 。 24.观察下列数,找出规律,并填空。 1111?、 261220 请写出第10个数是___________,第15个数是___________ 不是( ) A.有理数 B.自然数 C.整数 D.负有理数 26.课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话: ①0是整数,但不是自然数;②0既不是正数,也不是负数;③0不是整数,是自然数; ④0没有实际意义.其中正确的个数是 ( ) 27.下列说法中正确的有( ) ① 互为相反数的两个数的绝对值相等;②正数和零的.绝对值都等于它本身;③只有负数的绝对值是它 的相反数;④一个数的绝对值相反数一定是负数。 A、1个 B、2个 C、3个 D、4个 98)?99时,正确的方案可以是 ( ) 99 9898981A.?(100?)?99 B.?(100?)?99 C. (100?)?99 D (?101?)?99 .利用分配律计算(?100 29.不小于-4的非正整数有( ) 个 个 个 个 30.如图3数轴上标出若干点,每相邻两点相距1个单位,点A,B,C,D对应的数分别是a、b、c、d,且d?2a?10,那么数轴的原点应是( ) 点 点 点 点 31.肯德基、联华超市和公园依次坐落在一条东西走向的大街上,肯德基图3 在联华超市西20米处,公园在联华超市东100米处,小彬从联华超市 沿街向东走了40米,接着又向东走了?60米,则小彬位置在 ( ) A.肯德基 B.公园 C.公园西边40米 D.公园东边?60米 32. 下列各数中数值相等的是( ) 与2 B.-2与(-2) C.-3与(-3) D.[-2×(-3)]与2×(-3) 33. a和b 互为相反数,则下列各组中不互为相反数的是( ) 和b 和b C.-a和-b D. 与22 34.在下列各数中最小的为( ) ×1010 ×1010 ×1010 ×1010 35.一个点从数轴上表示-2的点开始,按下列条件移动后,到达终点,?说出终点所表示的数,并画图表示移动过程. (1)先向右移动3个单位,再向右移动2个单位. (2)先向左移动5个单位,再向右移动3个单位. (3)先向左移动个单位,再向右移动个单位. (4)先向右移动2个单位,再向左移动个单位. 36.跳蚤落在数轴上的某点k0处,第一步从k0向左跳1个单位到k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4,?,按以上规律跳了100步时,电子跳蚤落在数轴上的点k100所表示的数恰是51,试问电子跳蚤的初始位置点k0表示的数是多少? 3322ab 37.已知a?3?b?2?0,求a和b的相反数. 38.若a?5,b?2,c?6且a?b(a?b),a?c?a?c,求a-b+c的值。 39. (1)找两个数,它们互为相反数,它们的倒数也互为相反数; (2)能找出两个数,它们既互为相反数,又互为倒数吗? (3)能找到一个数,它的相反数和倒数互为相反数吗? 40.在数轴上表示下列各数及其相反数,并把它们按照从大到小的顺序排列: .... 2,? 31522241.计算:(1)60×-60×+60×18×?-+13×-4× ?77733?3? (3)(—81)÷ (5)(?5)?(?91,-,0,?3 4294×÷(—16) (4) ×(-5) 49252525)?(?7)?(?)?(?12)?(?) 777 一、整式乘除法 单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。ac5bc2=(ab)(c5c2)=abc5+2=abc7 注:运算顺序先乘方,后乘除,最后加减 单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc 注:不重不漏,按照顺序,注意常数项、负号。本质是乘法分配律。 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn 乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差。(a+b)(a-b)=a2-b2 完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍。(a±b)2=a2±2ab+b2 因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式。 因式分解方法: 1、提公因式法。 关键:找出公因式 公因式三部分:①系数(数字)一各项系数最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式。需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项。 注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。 2、公式法:①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2 完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方。 ③x3-y3=(x-y)(x2+xy+y2) 立方差公式 3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq 因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止。 弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差 添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证 本期以来,我任七年级六班数学教学工作,收益良而多。总体看,我认真的执行学了校教育教学工作计划,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,用心探索。为指导今后教学,对一期的数学教学工作做如下总结: 一、课前做好充分的准备 备课时,我结合教材的资料和学生的实际精心设计每一堂课的教学过程,不但要思考知识的相互联系,而且拟定采用的教学方法,各教学环节的自然衔接;既要突出本节课的重点,又要突破本节课的难点。 二、充分发挥学生的主体作用 在课堂上个性注意调动学生的用心性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得简单,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分思考每一个层次的学生学习需求和学习潜力,让各个层次的学生都得到提高。教师在教育教学中还应进一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新潜力”,以“自主——创新”课堂教学模式的研究与运用为重点,努力实现教学高质量,课堂高效率。 三、创新评价,激励、促进学生全面发展 对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的构成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。抓基础知识的掌握,抓课堂作业的堂堂清,采用定性与定量相结合,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么潜力。使评价结果有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展。 四、认真批改作业,布置作业做到精读精练 有针对性,有层次性。同时对学生的作业批改及时、认真,分析并记录学生的作业状况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关状况及时改善教学方法,做到有的放矢。 总之,一份耕耘,一份收获,教学工作苦乐相伴,既有成功的喜悦,也有失败的困惑。本在教学工作中,本人应多汲取别人的长处,弥补自我的不足,争取在教学质量上有更进一步的提高。 1.同一平面内,两直线不平行就相交。 2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互 为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。 3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其 中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足 5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短; 7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在 两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。 10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题 11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质: 1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。 12.★命题:“如果+题设,那么+结论。” 三角形和多边形 1.三角形内角和为180° 2.构成三角形满足的条件:三角形两边之和大于第三边。 判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边) 3.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高 2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD 是斜边AB 上的高,则有ACBCCDAB CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的高为5.等高法:高相等,底之间具有一定关系(如成比例或相等) 【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角: 【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题边形的★内角和★外角和√对角线条数为 【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。 单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种 (两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与 0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。 【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少? 平面直角坐标系 ▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点 ▲建系原则:原点、正方向、横纵轴名称(即x、y) √语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系 ▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★ 点的平移规律(P51归纳) 例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳) 重点题目:P53练习;P543、4题;P557题。2.对称规律▲ 关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数 关于原点对称,横、纵坐标同时取相反数 例:P点的坐标为(5,7),则P点 (1.)关于x轴对称的点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★ 假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵 组距轴为“频数” 6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的中点,以及x 轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题 二元一次方程组和不等式、不等式组 1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分) 3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342 步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题) 数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。 9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组 在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。 一、正数和负数 1、正数和负数的概念 负数:比0小的数正数:比0大的数0既不是正数,也不是负数 注意: ①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2、具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃。 支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。 3、0表示的意义 ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。 相反数 1、相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负; ⑶0的相反数是它本身;相反数为本身的数是0。 2、相反数的性质与判定 ⑴任何数都有相反数,且只有一个; ⑵0的相反数是0; ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 3、相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。 4、相反数的求法 ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5); ⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b); ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化 简得5) 5、相反数的表示方法 ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。 当a>0时,-a<0(正数的相反数是负数) 当a<0时,-a>0(负数的相反数是正数) 当a=0时,-a=0,(0的相反数是0) 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 乘积是1的两个数互为倒数。 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。 负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。 把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。 上面内容是初中数学有理数的乘除法知识点总结,想必大家都已经做好笔记了,接下来还有更详细的初中数学知识点尽在哦,希望同学们关注了。 初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。 平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。 初中数学知识点:点的坐标的性质 下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。 点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。 对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数; (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为: 绝对值的问题经常分类讨论; (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|, 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0 丰富的图形世界 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。 2、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 3、常见的几何体及其特点 长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。 棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。 棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。 圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。 圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。 球:由一个面(曲面)围成的几何体 4、棱柱及其有关概念: 棱:在棱柱中,任何相邻两个面的交线,都叫做棱。 侧棱:相邻两个侧面的交线叫做侧棱。 n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。 5、正方体的平面展开图:11种 6、截一个正方体: (1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。 注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形. ②、长方体、棱柱的截面与正方体的截面有相似之处. (2)用平面截圆柱体,可能出现以下的几种情况. (3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究) (4)用平面去截球体,只能出现一种形状的截面——圆 我区从20xx年秋季开始,在七年级全面实施新课程改革实验。根据区教委关于课程改革工作布署和区教研室关于课改年级的基本要求,结合我区七年级数学课程教学的实际,本学科指导小组就课程改革一年的工作总结如下。 一、学年开展的主要活动 1、教师培训 20xx年8月21至25日,全区七年级数学教师参加了2天通识培训和3天学科培训。全区有38所学校、146人参加培训。通识培训的内容万有:郭元祥老师的报告《基础教育课程改革的背景、理念和目标》;傅道春老师的报告《新课程与教师行为变化》;伍新春老师的报告《新课程与学生学习方式的变革》;卢永莉老师的报告《新课程与教育评价改革》。学科培训内容有:张建鹏老师的报告《对数学课程标准的理解、掌握与实践》;金绍鑫老师的报告《如何学习新教材,怎样指导学生学习新教材》。 经过学习和培训,老师们收获很大,对课程改革的认识和理念有较大提高,教育观念和教育思想转变很快,投身于课程改革的热情也很高。 2、教师在教学中逐渐进行角色转变 (1)真正确立学生的主体地位 在教学活动中,使不同层次的学生都动起来,这就要求教师在课堂中穿插一些游戏,根据七年级学生好动和好胜的特点,不断变换教学方法,尊重学生、激励学生、发挥学生主动性,尽量采用成功教育,不仅可以给后进学生信心,也能使基础好的同学产生优越感。 (2)加强学生的参与意识 课堂上要做到“三少”、“三多”,一是教师要少讲、精讲,让学生多思考、多讨论甚至争论;二是教师对问题要少提示、少示范、少解答,让学生多独立思考和多自主探究;三是教师要少在讲台上指手划脚和滔滔不绝地讲,要深入学生中去,与学生多交流、多反馈信息、多参与学生的讨论,要让学生参与教学活动的全过程。 (3)提高学生的问题意识 在课堂上不但要让学生回答问题,而且要有意识地培养学生提出问题,发现问题,提出一个问题比解决一个问题更重要,要让学生大胆猜想,培养学生的好奇心,引导学生通过自己的努力去解决问题,探索解决问题的方法和最佳途径,不断地在教学中渗透启发式、讨论式教学,改变学生长期上课只带耳朵、等待教师公布解法和答案的习惯,逐渐使学生养成预习、提问题、课后回顾、思考和小结的习惯。 3.培养学生的数学兴趣 中差生对数学容易产生怨倦和畏难情绪,部分在小学已经对数学失去兴趣的学生,一定要在教学的过程中让他们尝到学数学的乐趣,尝到成功的喜悦,数学课要尽量上得生动直观,形象具体,结合学生的生活实际,要让学生感到数学是看得到,摸得着的东西,对社会、生活和自己一生都有用的和不可缺少的知识。 4、教师大胆参进行教与学的探索和实践 不宜长期使用一种教学模式,要让学生多些新鲜感,才会使他们在学习上长期都有兴趣。 不宜按部就班,书上有什么讲什么,没有的就一定不讲,要学会察学生颜观学生色。学习上让学生产生一种积极的情绪很重要。 不宜盲目赶进度,囫囵吞枣不利于消化,最后必然会出问题。 不宜降低规范要求,要求越高,学生的能力提高越快。特别是刚进初中的学生,更要严格要求,要求正确的读书习惯、正确的书写习惯、正确的语言文字表达习惯和严密的逻辑推理习惯,以逐渐培养学生的数学能力。 5、逐渐培养一批课改骨干教师 根据平时教学教研能力和对新课改的学习理解程度以及教研室的要求,我们初中数学学科成立了以教研员江相铭为组长,李正源(79中)、刘 爽(杨家坪中学)、陈翠红(铁路中学)、冉 珍(渝高中学)、黄 建(65中)、吴本武(西彭一中)为组员的九龙坡区初中数学课改指导小组。通过学习探讨研究、定期交流、命题检测等方式进行骨干培养,效果较好,一批课改积极分子和课改骨干教师正在茁壮成长。 6、组织教师观摩学习活动 (1)20xx年11月19—21日,在求精中学举行了重庆市初中数学新课程(北师大版)优质课比赛大片区复赛,我区有35人次参加了观摩、学习和听课。 (2)20xx年3月24—26日在巴蜀中学举行了重庆市初中数学新课程优质课比赛决赛,我区有53人次参加了观摩、学习和听课。 通过这两次观摩学习,教师们对课改理念、教学方法和教育思想等方面认识有较大提高,对我区数学课程改革起到了很大的推动作用。 7、开展片区备课 面对新教材带来的诸多困惑,为避免“单兵作战”低效益教学,我们组织了全区的数学骨干教师和学科带头人培养对象,积极开展片区备课,充分讨论我研究,加强教学的交流与合作,尽量做到资源共享。在新课程的实施过程中, 教师要想尽快成为新课程的有效执行者和积极建设者,需要对新课程准确地理解、诚心地接受、热情地投入、有效地执行,在实践新课程的过程中对自己以往的教学行为进行反思程。要作到、作好这点, 加强片区的交流与合作可以起到极好的推动作用, 互相取长补短,共同提高。 二、存在的主要问题 1、教学资源短缺 教师普遍感到新教材里面的综合实践活动多,学校配套资源不足,特别是教具、模型缺乏,市场上(书店或教材发行部门)无法买到相应的教具,教师和学生自制有一定的难度,致使课堂或学生开展活动缺乏兴趣,也使课堂教学不够生动、直观有趣。 2、学生成绩两极分化提前 由于新课改新教材惯串很多新的教育思想和新的教育理念,知识难度和跨度都很大,并注重培养学生的综合能力,许多学生在小学习贯于被动接受知识,进入初中以后适应性不强,导致跟不上趟,知识慢慢 “欠帐”,并逐渐增多,以致于提前出现了两极分化,比原先分化提前了半年以上。 3.教师在课堂上改革力度不多 (1)教师在教学上要引导学生对所学知识进行总结 归纳,形成知识网络,不能总是老师讲,学生听。为什么不能让学生讲,大家听,只有让学生自己分析,自己研究,才能培养学生获取知识的能力,才能培养学生的个性与创新精神。老师应该引导学生学会读书,学会归纳和置疑,学会学习。 (2)教师在教学中解决“是什么”、“怎样做”的问题较多,解决“为什么”、“不这样做行吗?”的问题较少。所以,课堂上讨论的少,发表独立见解的少,提问的少。“是什么”、“怎样做”的问题应该解决,更重要的是“为什么?”和“不这样做行吗?”的问题更应该解决。 3、部分教教师在课堂上课改理念体现不多,教学中关注学生不够,数学思维方法和过程给学生展示不足,培养学生数学能力、发散思维能力、独立思考问题和解决实际问题的能力以及创新思维能力还有得待提高。 三、几点建议 1、课堂教学改革是学校教学改革的主战场。教学改革的成功与否关系到学校的存亡。随着新课程标准的推行,进一步深化课堂教学改革,认真实践“教学六认真”是当务之急。俗话说得好:制度不在多,关键在落实。 2、教育行政部门要多深入教学一线了解实际情况,指导学校的教学管理;学校的校长、副校长也要更多地深入课堂,了解教学实际,亲自抓教学,帮助一线教师解决实际困难。教务处、科科室要真正起到指导教研、教改的作用。 3、以素质教育为中心,以培养学生的创新精神和实践能力为基本点,结合新课程标准的要求,让学生主动去实践、去探索、去归纳,在思考、实践、相互交流的过程中学习知识,获取知识,提高能力。 归纳,形成知识网络,不能总是老师讲,学生听。为什么不能让学生讲,大家听,只有让学生自己分析,自己研究,才能培养学生获取知识的能力,才能培养学生的个性与创新精神。老师应该引导学生学会读书,学会归纳和置疑,学会学习。 (2)教师在教学中解决“是什么”、“怎样做”的问题较多,解决“为什么”、“不这样做行吗?”的问题较少。所以,课堂上讨论的少,发表独立见解的少,提问的少。“是什么”、“怎样做”的问题应该解决,更重要的是“为什么?”和“不这样做行吗?”的问题更应该解决。 3、部分教教师在课堂上课改理念体现不多,教学中关注学生不够,数学思维方法和过程给学生展示不足,培养学生数学能力、发散思维能力、独立思考问题和解决实际问题的能力以及创新思维能力还有得待提高。 代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(分母中含有字母有除法运算的,那么式子叫做分式) 1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。 (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。 (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。 2、多项式 (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。 (3)多项式的排列: 把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 在做多项式的排列的题时注意: (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符 看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a、先确认按照哪个字母的指数来排列。 b、确定按这个字母降幂排列,还是升幂排列。 3、整式:单项式和多项式统称为整式。 4、列代数式的几个注意事项 (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式; (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。 初中数学实数知识点 平方根: ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根: ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数: ①实数分有理数和无理数。 ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。 ③每一个实数都可以在数轴上的一个点来表示。 初中提高数学成绩诀窍 数学不能只依靠上课听得懂 很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。 初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。 只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。 三个重要的数学思想 1、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。 2、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。 3、对应的思想。 初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学。 二元一次方程组 1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解. 2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组. 3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解). 4.二元一次方程组的解法: (1)代入消元法;(2)加减消元法; (3)注意:判断如何解简单是关键. ※5.一次方程组的应用: (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解 (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值; (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系. 一元一次不等式(组) 1.不等式:用不等号,把两个代数式连接起来的式子叫不等式. 2.不等式的基本性质: 不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; 不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变; 不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变. 3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集. 4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0). 5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.七下几何总结 第16篇
七下几何总结 第17篇
七下几何总结 第18篇
七下几何总结 第19篇
七下几何总结 第20篇
七下几何总结 第21篇
七下几何总结 第22篇
七下几何总结 第23篇
七下几何总结 第24篇
七下几何总结 第25篇
七下几何总结 第26篇
七下几何总结 第27篇
七下几何总结 第28篇
七下几何总结 第29篇
七下几何总结 第30篇
七下几何总结 第31篇
七下几何总结 第32篇
七下几何总结 第33篇