安承悦读

高中概率反思总结数学(精选25篇)

admin
导读 2、每长周星期三下午召开同组数学教师会,总结上一周教学得与失,布置下一长周教学任务。因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。[2]张彦龙.关于大专数学概率教学模式的研究[J].吉林省教育学院学报(上旬),2014(02):89-90.

高中概率反思总结数学 第1篇

根据本节课的内容及学生的实际水平,在教学中,采用启发、引导、探索、讨论交流的方式进行组织教学。充分调动学生的主动性、积极性使学生真正成为学习主体.整个教学过程贯穿“怀疑”—“思索”—“发现”—“解惑”四个环节,学生随时对所学知识产生有意注意,符合学生认知水平,培养了学习能力。

“概率”概念枯燥抽象,学生似懂非懂;抛币试验简单无趣,道理似易实难;教学活动,单调乏味;思辩之美,无从体会——“随机事件的概率”对许多高中教师而言,“食之无味、弃之可惜”.抛币试验是取是舍?频率估计概率的题型训练是否必要?再三权衡,笔者认为,抛币试验是本节课的精华,唯有亲历随机过程,体会其随机性与规律性,才能真正理解概率概念;另外,关于频率估计概率的题型训练,笔者则一笔带过——因为频率估计概率,重在其思想方法,而非具体操练,而且对具体估计值的处理,没有确信的统一方法.希望通过这节课的教学,能使学生感受到随机现象有趣的一面,纠正生活中一些错误常识,更客观的看待一些“偶然”情况;能使学生在紧张而活泼的教学环节中,亲历随机性和规律性的统一过程;能使学生初步理解随机性,并感受利用统计方法处理随机性中的规律性——随机性是表象,规律性是我们研究的主题.

当然,课堂是一个动态的过程,为使严谨的课堂更具弹性,我还做了其他准备,比如模拟抛掷骰子试验,赌徒分金币等学生感兴趣的且与本节课相关的问题,以便适时的给学生拓宽知识,让学生更充分地感受到数学知识在生产、生活、娱乐、服务等方面的广泛应用。创设情境,引导经历概念和模型构建的过程.概率涉及到很多的新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知识经验建立起广泛的联系这就要求我们在概念和模型的教学过程中,必须根据学生的生活,学习经验,创设丰富的问题情境,引导学生自己去生成概念、提炼模型,发现计算的法则,教师且不可因教学时间紧而淡化概念、模型构建的.过程否则,学生因获得孤立的概念、模型,无法在纷繁的问题情景中去辨认,从而导致解题思想僵化.构建知识网络,引导把握各知识点间的联系与区别. 学生能否准确迅速地运用概念和模型解题,主要取决于他们对概念和各模型之间的联系和区别是否真正把握,我们平时说“夯实基础,提高能力”,从本质上说就是引导学生把握知识间的联系和区别,即教材的知识结构是否转化为自己的认知结构因此,在概率的教学过程中,教师要随时引导学生将获得的新概念、新模型和已有的概念和模型进行对照和比较,找出它们之间的联系和区别,优化自己的认知结构充分展示建模的思维过程,引导感悟模型提取的思维机制. 概率问题求解的关键是寻找它的模型,只要模型一找到,问题便迎刃而解而概率模型的提取往往需要经过观察、分析、归纳、判断等复杂的思维过程,常常因题设条件理解不准,某个概念认识不清而误入歧途因此,在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验,久而久之,感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高。

高中概率反思总结数学 第2篇

随机事件的定义:

在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。

必然事件的定义:

必然会发生的事件叫做必然事件;

不可能事件:

肯定不会发生的事件叫做不可能事件;

概率的`定义:

在大量进行重复试验时,事件A发生的频率

总是接近于某个常数,在它附近摆动。这时就把这个常数叫做事件A的概率,记作P(A)。

m,n的意义:事件A在n次试验中发生了m次。

因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。

随机事件概率的定义:

对于给定的随机事件A,随着试验次数的增加,事件A发生的频率

总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。

频率的稳定性:

即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;

“频率”和“概率”这两个概念的区别是:

频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。

高中概率反思总结数学 第3篇

几何概型的概念:

如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。

几何概型的概率:

一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率

说明:(1)D的测度不为0;

(2)其中“测度”的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积;

(3)区域为“开区域”;

(4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。

几何概型的基本特点:

(1)试验中所有可能出现的结果(基本事件)有无限多个;

(2)每个基本事件出现的可能性相等。

高中概率反思总结数学 第4篇

相互独立事件的定义:

如果事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

若A,B是两个相互独立事件,则A与

与B都是相互独立事件。

相互独立事件同时发生的概率:

两个相互独立事件同时发生,记做A·B,P(A·B)=P(A)·P(B)。

若A1,A2,…An相互独立,则n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)。

求相互独立事件同时发生的概率的方法:

(1)利用相互独立事件的概率乘法公式直接求解;

(2)正面计算较繁或难以入手时,可从其对立事件入手计算。

高中概率反思总结数学 第5篇

“概率与统计”是义务教育课程标准试验教程内容。通过本课程的学习,要求学生正确区分“不可能事件”、“可能事件”、“必然事件”三类事件在数学中与日常生活中的不同用法,借助频数或频率的大小,初步体会事件发生的可能性的大小。

新数学课程标准在《统计与概率》的阐述中提出“使学生体会统计与概率对制定决策的重要作用;应注重学生从事数据处理的全过程,根据统计结果作出合理的判断”,要求学生“经历问题情境—建立模型—求解—解释与应用的基本过程”。本班学生从传统教材的使用过度到新教材的学习,会有不少的困难和不适应。师生之间从没有默契和配合,学生的拘谨和胆怯是难免的。因此采用一种特殊的活动选举总统来解决这个矛盾,再通过掷硬币的时间解决学生数据收集的体验的全过程。

刚开始学习统计知识的学生,在对概率的认识上往往是一种直觉上的感受,而不会通过时间去验证,这个问题的解决,就是要首先培养学生用实践的具体数据进行分析和判断然后去解释其规律性的东西。

在教学上,通过学生的认识模式规律,着眼于学生的信息获得处理传播与发展的过程,其基本思路如下;

认知过程:提供情景,诱发验证,提出诘问,了解学生的`推理。 先行组织:阐明目的,呈现相关知识,提供材料,认识接受。 探究训练:呈现问题,收集数据,加以实验,整理数据,反思解决。

归纳思维:形成概念,解释资料,运用原理谈就是的活动课使学生喜爱的一种形式,它给传统的灌输教学带来了生气和思维创新的环境,但是也给教师带来了极大的挑战和压力,在教学中教师往往不能预料到将要发生的可变的结论,因此,处理好这些可变因素就显得格外重要。在抛币试验中随着试验次数的增加,频率应该趋于一个稳定的值1/2,从而来说明为什么仅仅用频率这个概念还不能够表明问题的规律和特征,必须再用到频数这个概念。但是学生的试验次数太少,算出来的频率误差很大,而课堂不能进行长时间的实验,因此频率的值还不能说明这个问题,这就需要教师处理好课内与课外知识探究的衔接问题。

高中概率反思总结数学 第6篇

注重基础。

要做好基础知识的梳理、基本解题思路的归纳、基本数学思想方法的培养。数学中的基本概念、定义、公式、数学中一些隐含的知识点、基本的解题思路和方法,是第一轮复习的重中之重。因此建议同学要先把书本吃透,要先把书本上的常规题做好(近几年有很多高考题都来源于教材),在教师上课前要预习,必须在自己的头脑里有一个比较清晰的知识网络,在掌握基本知识的基础上,对基本的解题思路和方法做小结和归纳。上课要把教师解题的方法学到手。每个同学必须对数学基本题的要求及应答方法、技巧做到心中有数。学习要立足基础,揭示知识发生、发展和深化过程,展示问题的思维过程,从中领悟基础知识、基本方法的应用,通过变式训练归纳解题方法、技巧、规律和思想方法,促进由知识向能力转化,实现自我完善,争取收到做一题得一法、会一类通一片的效果。

注重系统。

系统就是要形成知识网络,这个网络包括大网和小网,所谓的大网就是要把前后各章节相关的知识点串联起来,形成有机的整体,做到纵向成一线(以知识为主线),横向成一片(各数学分支知识形成网络),纵横成一片(相互渗透形成有机的整体)。所谓小网是指我们在第一轮复习中每一章甚至是每一节都要整理出知识的难点、重点、疑点,做到心中有数,有的放矢,充分利用图像、表格,构建知识网络,使之变成清楚的几条线,而不是模糊的一大片。对概念、定义、公式、定理要深刻理解,牢固记忆,融会贯通,熟练提取,力求做到提起一根线带起一大串。因此建议同学不仅要有预习的良好习惯,还要学会总结归纳,形成知识体系。

注重习惯。

在第一轮复习阶段,还必须养成良好的解题习惯,如仔细阅读题目,看清数字,规范解题格式,高三阶段部分同学(尤其是思维比较快的同学),平时做题只是写个答案,不注重解题过程,书写不规范,或者思维不够严谨,一些细节的地方考虑不周全,在正规的考试中即使答案对了,但由于过程不完整而扣分过多。比如2005年文科第17题,利用和、差、倍角公式进行三角求值。本题主要考查有关角的和、差、倍的三角函数的基本知识,以及分析能力和计算能力。而同学失分的原因主要是计算失误,还有一部分学生因为整体作答拿不到步骤分。因此建议同学平时的练习和作业要有完整的书写步骤,要有属于自己的错题本,可结合平时解题中存在的问题分析是知识上的漏洞还是行为习惯方面的原因,必要时做些记录,有针对性地解决,以便在今后的解题中加以借鉴,以此增强识别相关问题类型的能力。

注重能力。

近几年的高考试题,集中体现出“稳中求变,变中求新,新中求活,活中求能(能力)”的特点,进一步深化能力立意,重基础、出活题、考素质、考能力是高考命题的指导思想。开放式问题、学习型问题、探索性问题、应用题等题型已成为高考试题中的一道亮丽风景线,要想较好地解决这些问题,一是要有良好的心理素质,二是要有较强的阅读理解能力,三是要有一定的独立获取知识的能力;因此无论是在第一轮复习还是第二轮复习中都要把提高自己的数学学习能力作为目标,加强自己探究数学题的能力和数学创新能力。这一指导思想在近几年的高考试题中,无论是客观题还是主观题中都有体现,而且越来越向深度和广度发展,同学们要重视,不少同学就是因为对数学思想方法认识模糊,理解肤浅,运用不畅,解题盲目随意,结果造成解题失误,从而影响成绩的提高。

高中概率反思总结数学 第7篇

教材选择了两个事例,一是某旅游景点2008年“十一”长假期间的游客情况,用条形统计图和折线统计图表示出同一组数据的不同特征;二是某城市1999年——2007年的人口数量统计结果,要求用折线统计图表示出数据的基础上,对该城市的.人口变化情况进行分析,并预测5年后该城市的人口数量。

本节课,在整个的教学过程中没有出现什么困难,学生的学习状态不错,教学效果也不错。在完成书上教学内容的基础上,我又增加了扇形统计图的教学,把三种统计图放在一起进行了比较,使学生能够更清楚地了解到三种统计图的特征,从而会有选择地应用。

高中概率反思总结数学 第8篇

在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。这些材料你可以通过网络或者通过老师来获取。找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。对于这两部分材料的研究,最终目的是时即使丢开课本,头脑中也能有考试所要求的数学知识体系。

数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。

一轮复习的重点永远是基础。要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。第一轮复习一定要做到细且实,切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实“双基”的目的。

运算能力是学习数学的前提。因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。而运算能力并不是靠难题练出来的,而是大量简单题目的积累。其次,强大地运算能力可以弥补解题技巧上的不足。我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。

再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题,每道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。

高中概率反思总结数学 第9篇

突然接到通知,说要听我的课,心里很慌张。这节课要讲的是九年级上册第25章第3节用频率估计概率第1课,虽然带过毕业班,但是本节内容是新增内容,我也是第一次教。再加上自己对教学内容把握的也不是很好,所以心里很没底。

果不其然,在上课过程中,我有好几次大脑短路的情况,脑子瞬间空白,不知道下一句该讲什么,整堂课上下来心里很不舒服。等公开课上完了,自己回到办公室一琢磨,才悟到课本内容安排的意图。

课本一开始有一个掷硬币游戏,安排意图是让学生理解用频率估计概率的`可行性。掷一枚硬币正面向上的概率是,这个数值用列举法即可求出,在这里我们通过实验发现正面向上的频率稳定在附近,从而得出:当试验次数足够大时,频率稳定于概率。所以我们可以用频率去估计概率。

既然用列举法求概率相对简单易行,那我们为什么还要用频率去估计概率呢?这里可以给学生举出抛图钉的实例,在这个实验中,正面向上和反面向上的可能性不相等;再比如想知道姚明罚球的命中率,因为实验中出现的结果不是有限个,所以也无法用列举法求概率。由这两个例子,让学生理解到学习用频率估计概率的必要性。

学生理解了用频率估计概率的可行性和必要性,接下来就可以进行练习了。在练习中要给学生讲明我们是用频率估计的概率,所以这个概率只是个近似值,而不是精确值,所以在问题的答语中,应说明结果大约是多少。

一次经历,一次收获,通过这次不成功的公开课,我有了新的收获,原来的不舒服被如今的喜悦所代替。头顶上乌云瞬间消失,变得晴空万里。

高中概率反思总结数学 第10篇

一、突出统计学的思维

统计学涵盖范围很广,其中最直接的表现是可以通过对整体中部分数据的分析,发现整体数据的性质。由于数据的统计结果具有很强的随机性,因此,在进行实际操作过程中,会不可避免地出现失误,这也是它不同于定性思维的主要表现。但统计思维与定性思维作为人类重要且不可缺少的思维方式,对人类进行数据分析与整理起着非常重要的作用。因此,这两种思维方式在人类应对大自然事物中具有很大的普遍性与存在性。统计学作为概率统计中随机变化的重要描述,对人类进行数据分析及结果统计中规避失误风险具有很强的指导作用。

使学生明确及了解统计知识的特点及作用是现代统计教学的重要目标。因此,教师在进行教学的过程中,可以通过对重要统计数据的合理分析,使学生了解统计学知识的作用,帮助学生明确统计学思维与定性思维的不同。如教师在进行“运用样本数据对整体进行估计”的教学时,可通过引入具体数据,使学生在分析数据的过程中明确样本数据的随机性与关联性。从另一个角度来讲,在对样本数据进行分析的过程中,抽样方法的合理性对总体概率具有一定影响,也就是说,选用的抽样方法较合理,那么,样本数据的信息就能够充分反映总体变化趋势与性质,对人们解决概率性事件具有很大帮助。

二、教学具体生活案例的引入

为了帮助学生对不确定事件发生概率进行理解,教师可以通过在教学过程中引用实际的生活经历来实现。通过这样的方法不仅可以帮助学生在学习过程中掌握数据处理方法,还可以培养学生应对实际问题的解决能力,帮助学生理解概率学知识的基本思想,使“概率与统计”知识在生活中具有更强的广泛应用性。如教师在进行“最小二乘法”的课堂教学时,通常会采用最基本也是最直接的方法,就是对“最小二乘法”进行基本的介绍及解释。但是这种教学方式不仅会造成学生对教学内容实质的不理解,还不利于学生学习以及思维能力的培养,对教学质量的提升有很大的影响。教师可通过学生较为感兴趣的话题进行举例,让学生对统计出来的数据进行散点图的整理与分析,从而发现不同的数据之间存在着线性的变量关系,这时教师再引入“最小二乘法”概念,引导学生理解与掌握线性回归方程,完成“最小二乘法”的教学内容。教师在对教材及概率事件进行案例收集时,不能仅仅局限于数学学科,还应加强对其他学科中有关概率事件案例的收集,同时强化学生发现问题的能力,通过引用具有实际生活意义的教学案例,帮助学生更好地掌握“概率与统计”知识。

三、注重对随机概率现象的解释

高中概率反思总结数学 第11篇

条件概率的定义:

(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示.

(2)条件概率公式:

称为事件A与B的交(或积).

(3)条件概率的求法:

①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=

②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)=

P(B|A)的性质:

(1)非负性:对任意的A∈Ω,

; (2)规范性:P(Ω|B)=1;

(3)可列可加性:如果是两个互斥事件,则

P(B|A)概率和P(AB)的区别与联系:

(1)联系:事件A和B都发生了;

(2)区别:a、P(B|A)中,事件A和B发生有时间差异,A先B后;在P(AB)中,事件A、B同时发生。

b、样本空间不同,在P(B|A)中,样本空间为A,事件P(AB)中,样本空间仍为Ω。

高中概率反思总结数学 第12篇

高中数学知识点大全

集合的分类:

(1)按元素属性分类,如点集,数集。

(2)按元素的个数多少,分为有/无限集

关于集合的概念:

(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:

含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N。

在自然数集内排除0的集合叫做正整数集,记作N+或NX。

整数全体构成的集合,叫做整数集,记作Z。

有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中数学复习计划

一、目的:

在学校高三毕业班教学备考的指导下,根据学科的特点与历年的高考说明及高考中数学的地位,使数学复习有一个依据顺序,协调班级之间的教学复习工作,使与教师充分发挥各自特长、特点、优点,出色完成高三数学复习的教学任务,让学生得到应有的数学知识,在知识的海洋中遨游,达到理想的彼岸。

二、指导思想:

针对高三学生现有的真实水平及实际情况,以课本内容为基础,新课程标准及高考说明为依据,选择适合的复习资料,运用恰当的途径,熟读、细读高考说明,准确把握高考的信息、动向,规范复习,夯实基础,充分发挥本学科的科任教师的特长、特点,协调与其他学科间的横向关系,让各位老师都舒畅、乐意、轻松、出色的完成高三数学复习教学任务。

三、复习安排:

1、第一轮(9月初至明年3月中旬)基础复习(课本为主,蓝本资料为辅助)。夯实基础,让学生弄清楚所学知识的基本结构,基本技能,重视知识结构的先后顺序及掌握基础知识的方法并赋以应用。具体课时安排:

知识内容课时数

1、集合与常用逻辑用语6

2、平面向量8

3、不等式的性质与解法包括基本不等式和简单的线性规划。10

4、函数的概念及性质10

5、幂函数、指数函数、对数函数6

6、导数及其应用6

7、函数与方程,函数的综合应用4

8、等差数列与等比数列4

9、递推数列与数学归纳法4

10、三角函数8

11、三角恒等变换4

12、解三角形4

13、平面解析几何初步10

14、圆锥曲线方程10

15、立体几何初步12

16、空间中向量与立体几何6

17、计数原理与概率10

18、随机变量及其分布6

19、算法初步、统计、统计案例12

20、推理与证明及复数8

第二轮:(明年3月下旬到4月下旬)专题复习(视情况有机选择)。教师以方法、技巧为主线;主要研究数学思想方法,不断提高学生分析问题、解决问题的能力,强调通性通法,系统全面地复习,灵活运用通法,培养学生的思维能力和思想方法,注意必考点,关注热点,立足得分点,分析易错点,把握准确无失误。具体作法(专题选取):

1、第一轮复习中反映出来的弱点;

2、教材中的重点;

3、历年高考试题中的热点;

4、基本数学思想方法的系统介绍;

5、解题应试的技巧;

6、具体题型的复习(如:选择题、填空题、最值、定点、定值、平几、立几、……)

第三轮:(5月份至临考)综合训练,补漏补缺。重视反思,减少失误,提高思维的灵活性、创造性、规范解题。优化学习方法,规范模式规律,心理辅导,放松心情,轻松应考。

高中数学教学计划

一、教学目标

培养学生德、智、体等方面全面发展,使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能,强化学生的交流意识、合作意识、探究意识、重点培养学生创新精神和实践能力,并注重培养学生良好的学习习惯。

二、具体措施

1、同组数学教师加强同头研究,集中集体智慧,统一进度、统一考试、统一安排。

2、每长周星期三下午召开同组数学教师会,总结上一周教学得与失,布置下一长周教学任务。

3、每一章节小考一次,重点班、普通班分别命题,分层次检测,每章责任人见附表。

4、每个组员加强自身业务知识学习,每学期至少听课15节。

5、全组教师尽量采用多媒体教学,加大大课堂容量,加强课堂趣味性。

三、进度安排

说明:各班教学进度可根据本班实际情况适当调整!

高中概率反思总结数学 第13篇

《概率》主要在学习完随机事件的定义后而教学。教学中要培养学生的随机观念和概率思想,并初步建立概率模型。对学生而言,有限等可能事件的特点和计算有限等可能事件的概率的理解是难点。教学中我认为应注意以下几点:

(一)介绍概率发展史

教学中可向学生简单介绍概率发展史的内容,让学生了解这一部分知识背景。例如:概率起源于生活中的游戏。最早的概率论专着《论中的计算》。从数学史中激发学生的学习兴趣,培养学生辨证的认识事物的能力。

(二)问题设计贯穿全章

本节每一个环节都运用了问题的形式,这样更能抓住重点,各个突破,并可激发学生的学习兴趣,使学生由发散思维过渡到集中性思维上来,并可体现学生的主体性,但在教学过程中要克服以完成教学任务为主要目标,不舍得给学生时间去探索的弊端,要充分相信学生,给予学生足够的空间和时间。

(三)把握难易度

1、学生在解决古典概型中有关概率计算时,往往会忽视古典概型的两个特征,错用古典概型概率计算公式,因此在教学中结合例1进行深入讨论,让学生真正体会到判断古典概进型的重要性,

2、在归纳概率计算公式时,很多学生可能会不重视,想当然地得出结论,教学中应引导学生揭示公式得出的`过程,并学会从特殊到一般研究问题的方法。

3、学生初步学习概率,较难将实际问题模型(古典概型)化,因此在教学应重视培养学生建模的意识的能力。

(四)联系实际

从学生身边的例子出发,减少学生对知识的陌生度,同时增加了课堂的趣味性,增强学生探求知识的欲望。例:

(1)考试前老师会叮嘱学生:“做判断题、选择题时遇到不会的一定别空着。”

(2)乒乓球比赛结果的预测。

(3)抓阄中后抓不会吃亏。

(4)天气预报中的“降水概率”。

教学中还要多阅读相关资料,选择适合学生的趣味性的问题开展教学活动。

高中概率反思总结数学 第14篇

作为义务教育阶段学习的继续,初中阶段的数学学习将巩固,加深学生已形成的对数裾分析方法的理解,扩展学生已经获得的对不确定性和概率的经验。使学生通过从事数据处理的全过程,认识统计方法对制定决策的作用。

通过实验,理论分析等方法,逐步培养学生深入思考的习惯,体会运用概率思考问题的特点。基础教育阶段的概率统计,重要的不只是具体的知识,规律,法则,更是过程,思想和观念的学。目的是让学生体会概率统计的基本思想,以及在社会生活中的.应用。在教学中提供现实的问题情景,使学生真实的参与,面对要解决的问题,主动的设计方案,收集数据,制定决策,为维护自己的观点而寻求论据,与他人进行讨论与交流,这些都将使他们终身收益。

高中概率反思总结数学 第15篇

高中数学知识点汇总

1.必修课程由5个模块组成:

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2:3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数,圆锥曲线

高考相关考点:

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5.平面向量:初等运算、坐标运算、数量积及其应用

6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

12.导数:导数的概念、求导、导数的应用

13.复数:复数的概念与运算

高中数学学习要注意的方法

1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了的理想。

2.要重视数学概念的理解。高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

3.对数学学习应抱着二个词――“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!

4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”――问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。

6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜。

高中数学复习的五大要点分析

一、端正态度,切忌浮躁,忌急于求成

在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为:

(1)对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。

(2)复习的时候心不静。心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。

(3)在第一轮复习阶段,学习的重心应该转移到基础复习上来。

因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。只有这样,一轮复习才能显出成效。

二、注重教材、注重基础,忌盲目做题

要把书本中的常规题型做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽视了对基本概念的掌握,对基本结论和公式的记忆及基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。

可见,数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。不妨以既是重点也是难点的函数部分为例,就必须掌握函数的概念,建立函数关系式,掌握定义域、值域与最值、奇偶性、单调性、周期性、对称性等性质,学会利用图像即数形结合。

三、抓薄弱环节,做好复习的针对性,忌无计划

每个同学在数学学习上遇到的问题有共同点,更有不同点。在复习课上,老师只能针对性去解决共同点,而同学们自己的个别问题则需要通过自己的思考,与同学们的讨论,并向老师提问来解决问题,我们提倡同学多问老师,要敢于问。每个同学必须了解自己掌握了什么,还有哪些问题没有解决,要明确只有把漏洞一一补上才能提高。复习的过程,实质就是解决问题的过程,问题解决了,复习的效果就实现了。同时,也请同学们注意:在你问问题之前先经过自己思考,不要把不经过思考的问题就直接去问,因为这并不能起到更大作用。

高三的复习一定是有计划、有目标的,所以千万不要盲目做题。第一轮复习非常具有针对性,对于所有知识点的地毯式轰炸,一定要做到不缺不漏。因此,仅靠简单做题是达不到一轮复习应该具有的效果。而且盲目做题没有针对性,更不会有全面性。在概念模糊的情况下一定要回归课本,注意教材上最清晰的概念与原理,注重对知识点运用方法的总结。

四、在平时做题中要养成良好的解题习惯,忌不思

1.树立信心,养成良好的运算习惯。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

2.做好解题后的开拓引申,培养一题多解和举一反三的能力。解题能力的培养可以从一题多解和举一反三中得到提高,因而解完题后,需要再回味和引申,它包括对解题方法的开拓引申,即一道数学题从不同的角度去考虑去分析,可以有不同的思路,不同的解法。

考虑的愈广泛愈深刻,获得的思路愈广阔,解法愈多样;及对题目做开拓引申,引申出新题和新解法,有利于培养同学们的发散思维,激发创造精神,提高解题能力:

(1)把题目条件开拓引申。

①把特殊条件一般化;②把一般条件特殊化;③把特殊条件和一般条件交替变化。

(2)把题目结论开拓引申。

(3)把题型开拓引申,同一个题目,给出不同的提法,可以变成不同的题型。俗称为“一题多变”但其解法仍类似,按其解法而言,这些题又可称为“多题一解”或“一法多用”。

3.提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

五、学会总结、归纳,训练到位,忌题量不足

我在暑期上课的时候发现,很多同学都是一看到题目就开始做题,这也是一轮复习应该避免的地方。做题如果不注重思路的分析,知识点的运用,效果可想而知。因此建议同学们在做题前要把老师上课时复习的知识再回顾一下,梳理知识体系,回顾各个知识点,对所学的知识结构要有一个完整清楚的认识,认真分析题目考查的知识,思想,以及方法,还要学会总结归纳不留下任何知识的盲点,在一轮复习中要注意对各个知识点的细化。这个过程不需要很长的时间,而且到了后续阶段会越来越熟练。因此,养成良好的做题习惯,有助于训练自己的解题思维,提高自己的解题能力。

实践出真知,充足的题量是把理论转化为能力的一种保障,在足够的题目的练习下不仅可以更扎实的掌握知识点,还可以更深入的了解知识点,避免出现“会而不对、对而不全”的现象。由于高考依然是以做题为主,所以解题能力是高考分数的一个直接反映,尤其是数学试题。而解题能力不是三两道题就能提升的,而是要大量的反复的训练、认真细致的推敲才会有较大的提升。有句话说的好,“量变导致质变”,因此,同学们在每章复习的时候,一定要做足够的题,才能够充分的理解这一章的内容,才能够做到对这一章知识点的熟练运用。

但是,大量训练绝对不是题海战术。因为针对每章节做题都有目标,同时做题训练都需要不断的总结,既要横向总结,也要纵向深入。只要在每章节做题做到一定程度的时候都能感觉到这一章的知识点有哪些,典型题型有哪些,方法和技巧有哪些,换句话说,如果随机抽取一些近几年关于这一章的高考题都会做,那我认为就可以了。

高中概率反思总结数学 第16篇

今天县教研室来我校进行教学视导,我上了一节初三《统计与概率》试卷讲评课,虽然这堂课内容不是很难,但是一堂课下来,本人觉得我的课堂教学还是存在很多的问题;课堂教学效果不理想。

课堂时间分配不合理,重点题目在黑板上得到充分的展示。巩固练习没能很好地处理。课堂小结流于形式。没有很好地把握课堂教学的节奏。没能对知识、方法作进一步的归纳和提炼,没能站到数学思想的高度认识所学内容。

通过教研室刘老师的.点评,本在今后的试卷讲评课中将从以下几方面努力:

1.很好地把握课堂教学的节奏,课堂上让学生们解决重点出错的问题上。

2.注重前后知识的联系,对知识、方法作进一步的归纳和总结,提升,站到数学思想的高度认识所学内容。

3.及时引导学生总结解题中的有效方法,寻找适合学生的最佳学习途径,提高学生的学习成绩.

4.通过试卷讲评引导学生学会学习、培养学生良好的考试习惯。

高中概率反思总结数学 第17篇

义务教育阶段学生可以掌握的概率模型大致分为三类:第一类问题没有理论概率只能借助试验模拟获得其估计值,一般而言,它是一个纯粹的现实问题;第二类问题虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生的认知水平,学生只能借助试验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。

对于第三类问题,其繁简程度又有所不同,如①随意掷一枚均匀的骰子,朝上点数为6的概率;②掷一枚均匀的骰子,点数为奇数的概率;③连续掷两次均匀的骰子,两次骰子的点的和为6的概率,等等。本章以两步试验的事件发生的概率问题为切入点,一方面加强前后知识的联系,另一方面通过试验,探索试验结果与理论概率之间的辩证关系,进一步加深学生对概率的理解,并借此引导学生用试验的方法估计一些复杂的随机事件发生的概率.

本章共分为四节。第1节通过一个课堂试验活动,让学生逐步计算一个随机事件发生的试验频率,观察其中的规律性,并利用类比的方法归纳出试验频率趋近于理论概率这一规律性,然后介绍两种计算理论概率的方法一一树状图和列表法;在此基础上,第2、3节利用试验频率来估计一些复杂事件发生的概率;第4节利用试验频率与理论概率之间关系的'分析,揭示统计推断的一些理论依据,力图加强概率与统计的联系。

在概率模型的选择上,教科书注意了模型的递进性、现实性和趣味性,以激发学生的学习兴趣。例如,对于试验估算概率的有关问题,力图联系学生的生活实际,同时又注意了问题的趣味性和可操作性,为此选择了一个历史上著名的投针试验和一个密切联系学生生活的生日问题。

高中概率反思总结数学 第18篇

高三数学复习,大体可分四个阶段,每一个阶段的复习方法与侧重点都各不相同,要求也层层加深,因此,同学们在每一个阶段都应该有不同的复习方案,采用不同的方法和策略。

1、第一阶段,即第一轮复习,也称“知识篇”,大致就是高三第一学期。在这一阶段,老师将带领同学们重温高一、高二所学课程,但这绝不只是以前所学知识的简单重复,而是站在更高的角度,对旧知识产生全新认识的重要过程。因为在高一、高二时,老师是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,你学的往往是零碎的、散乱的知识点,而在第一轮复习时,老师的主线索是知识的纵向联系与横向联系,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,侧重点在于各个知识点之间的融会贯通。

2、第二轮复习,通常称为“方法篇”。大约从第二学期开学到四月中旬结束。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用“配方法、待定系数法、换元法、数形结合、分类讨论”等方法解决一类问题、一系列问题。

3、第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。

4、最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向。

高中概率反思总结数学 第19篇

“概率”是新课程的新增内容,由于概率问题与人们的实际生活有着紧密的联系,对指导人们从事社会生产、生活具有十分重要的意义,所以概率这个章节也成了近几年新课程中考的一个热点。

概率所研究的对象具有抽象和不确定性等特点,学生很难用已获得的解决确定性数学问题的思维方法,去求得“活”的概率问题的解,这就决定了概率教学中教师的教学方式和学生的学习方式的转变,学生不能沿用传统的记忆加形成性训练的机械学习方法去学习,教师不能沿用传统的给予加示范性的灌输式教学方法去教学,教师必须引导学生经历概率模型的构建过程和模型的应用过程,从中获得问题情境性的情境体验和感悟,才能面对“活”的概率问题为此,在概率教学中,我们必须做到:

1、创设情境,引导经历概念和模型构建的过程。概率涉及到很多的新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知题情境,引导学生自己去生成概念、提炼模型,发现计算的法则,教师且不可因教学时间紧而淡化概念、模型构建的过程否则,学生因获得孤立的概念、模型,无法在纷繁的问题情景中去辨认,从而导致解题思想僵化

2、构建知识网络,引导把握各知识点间的联系与区别。学生能否准确迅速地运用概念和模型解题,主要取决于他们对概念和各模型之间的联系和区别是否真正把握,我们平时说“夯实基础,提高能力”,从本质上说就是引导学生把握知识间的联系和区别,即教材的知识结构是否转化为自己的认知结构因此,在概率的教学过程中,教师要随时引导学生将获得的新概念、新模型和已有的概念和模型进行对照和比较,找出它们之间的联系和区别,优化自己的认知结构。

3、充分展示建模的思维过程,引导感悟模型提取的思维机制。概率问题求解的关键是寻找它的模型,只要模型一找到,问题便迎刃而解而概率模型的提取往往需要经过观察、分析、归纳、判断等复杂的思维过程,常常因题设条件理解不准,某个概念认识不清而误入歧途因此,在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验,久而久之,感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高识经验建立起广泛的联系这就要求我们在概念和模型的教学过程中,必须根据学生的生活,学习经验,创设丰富的问题。

高中概率反思总结数学 第20篇

关键词:大专数学;教学探究;反思

大专数学的数学课程主要分为高等数学、解析几何以及概率论等科目,不同的数学科目对于学生数学思维能力的培养多数是不同的。但是就目前的教学体制来看,学生在数学学习的过程中存在较大的问题,并且教师也缺乏有效的教学反思,导致教学效率不高。

一、目前大专院校在数学教学中存在的问题

(一)师生观念上的局限性首先,想要切实有效地提升大专数学的教学效率需要真正从教师的观念改变做起。然而就目前的形式来看,教师的教学观念过于落后。教师观念上的落后主要分为应试教育的影响以及专业数学的影响。部分教师在数学课程上教导学生的能力局限在试卷的做题上,比如说具体的一个极限的概念以及应用讲解,学生在进行极限概念的学习过程中往往不懂如何灵活使用,而教师也对此没有采取更深入的教学来帮助学生理解知识,最终导致的后果就是学生虽然能够掌握极限的相关求解题目,懂得如何去生搬硬套公式去解答试卷中的题目,但是却不知道为什么,不知道求解的原理是什么,最终使得学生在经过大学数学学习之后只懂得如何解题,却不知道如何应用。再次,有关数学专业教学过程中,教师过多关注于学生的专业掌握情况,大专教学不仅仅需要学生掌握一定的知识,培养一定的实践能力,还需要能够在经过几年的学习之后达到一定的提高综合素质的能力,在数学学习的过程中能够懂得如何做人,教师在这方面的教学也是有所欠缺的。

(二)教师的照本宣科式教学第二,教师在进行有关数学课程的教学过程中存在一定的误区,认为教材中的相关知识概念比较全面,能够帮助学生形成较好的数学思维能力,并且教材中的设置已经比较符合学生的学习方式。在课堂的教学过程中容易出现“念教材、固定讲解模式”的出现,教师数学教学过程中仅仅通过照本宣科的教学模式来培养学生的数学能力是远远不够的,不仅无法有效提升学生的学习效果,而且学生往往对缺乏创新和趣味的数学课堂感到一定的疲倦,久而久之,容易使学生产生厌恶心理,从而影响到学生的数学学习。

(三)教学方式上的匮乏,学生自主学习情况欠缺最后,当前教师在数学教学过程中的教学方式缺乏多元化,采取的教学模式大多都是传统的以教师为中心的课堂教学,学生在课堂学习中的创新能力和发散思维被大大的遏制,学生的学习效果也不太乐观。而对于学生来说,学生在大学里面轻视数学的重要性,在经过高中阶段的数学学习之后,到了大学缺少了热情和激情,在数学学习的过程中抱着消极的态度学习,认为只要考试能过就行。而这样的学习思想不仅严重降低了数学学习质量,而且也降低了数学学习自主性。

二、教学反思,优化数学课堂

我们对当前大专数学教学过程中教师和学生存在的学习问题和局限性进行了系统全面的分析。总结来说,主要分为教师的教学观念、教学体制上的局限和缺乏,学生自主学习能力,数学学习态度上的错误导致的。因此,在大专数学教学过程中,不断的开展数学反思,优化课堂教学模式,提升课堂教学效率是非常有必要的。

(一)转变传统教学观念现在最为重要的一点是需要教师能够跟随时代的脚步,不断的改变传统的教学观念,从根本上认清楚大专学生在数学学习中缺少的是什么能力,通过什么样的教学方法能够提升学生的创造性思维,而不仅是培养学生的应试能力,导致学生未来到社会中只会做题不会实践。我通过实际的教学发现,在数学课堂上,如果能够将一些具体的数学知识和数学概念与实际生活联系起来,让学生能够通过实际的案例来达到掌握知识的效果,所取得的成效是非常显著的。将数学思想融入到实际的生活案例当中,不仅能够有效的提升学生的课堂学习兴趣,而且在一定程度上也促进了学生数学应用能力,数学思维能力的养成,为学生未来走入社会奠定了坚实的基础。就以《概率论》为例,在概率论这一门课程的学习过程中,其中基本上所有的知识点和概念的讲解都可以通过转化的思维方式,将一个具体的数学概念转化为生活案例来让学生进行学习和思考,概率论的知识点比较抽象,学生单纯依靠理解往往效率较低。而我通过不断的教学反思,发现如果把一些具体的知识点和生活中的案例联系起来,那么学生往往能够更深入的思考,然后我再把案例普遍化,使学生了解“一般公式”的含义,达到学习的目的。总而言之,大专数学教学需要教师不断的进行教学反思,不断的优化课堂教学模式,根据合适的教学概念和知识点来设定合理的教学对策,从而提升学生的数学思维能力而不是学生的应试能力。

(二)数学建模思想的教学反思笔者在经过了长时间的反思学习之后发现,在大专数学的教学过程中,如果能够帮助学生形成有效的建模思想,使学生在一些重点难点知识点的学习过程中把它们转化为数学模型,那么学生的学习效率能够成倍提升。因为数学模型的思想是将这一类知识点难点的题目类型进行有效的总结,抽取概念中的核心数学思想,将其形成一个数学模型,然后学生通过对数学模型的学习来掌握相关的知识点和难点。以高等数学中的微分和积分概念为例,高等数学学习过程中,核心的思想就是微分和积分的数学思想,大部分的知识点和概念都是有这两个思想衍生而来的,而通过实际的教学案例发现,学生在这方面的掌握情况并不乐观,部分的学生往往容易混淆这几个思想方法,一旦学生混淆了概念,那么在高等数学的学习过程中就很容易出现迷茫,对后续的课程学习造成了严重的影响。微分和积分的概念在曲面面积求解、近似求解、极限的相关概念中都有应用。在这一部分知识教学中,笔者逐渐摸索出帮助学生建立一定的数学模型对于学生的学习具有显著的效果。在课堂教学中笔者一般会通过提出问题、学生讨论、总结概括等步骤来逐步的引出数学模型的概念。首先将微分和积分的数学概念进行讲解,然后通过提问的方式,询问学生如何能够通过微分积分的概念来结合极限解答问题,如何来求解近似值等;其次帮助学生建立“近似”的数学思想,使学生了解微分的核心概念,并进行总结概括,最终将抽象化的知识点概念转化为数学模型,通过学生对数学模型的学习来掌握微分积分的数学思想,从而使学生在高等数学的学习过程中能够达到事半功倍的效果。总之,在大专高等数学的教学过程中,微分积分的概念是非常重要且有用的,很多题目的求解都需要用到这个概念,笔者通过不断的反思总结得出了有效的教学方式,即通过建模的数学思想来帮助学生理解知识。[1]

(三)数学教学中培养学生的数学思想大专的课程学习是需要学生在未来的社会发展中能够得以应用和发展自我的,而不是让学生来应对考试的,因此大专的数学教学应当以培养学生的数学思维和创造性思维为主,我们在教学的过程中 应当重视学生的实践应用能力,通过课程的教学来帮助学生形成有效的数学思想,使得学生能够在类似知识点的解答和应用当中得心应手。[2]在笔者看来,大专阶段的数学课程主要的几个数学思想有转化思想、类比思想和数形结合思想,这几个思想贯穿了高等数学学习的整个过程,笔者通过不断的教学与课程的总结反思发现学生养成良好的数学思想在数学学习中能够显著提升数学能力。就以《概率论》来说,在概率论的“包含被包含以及真包含”等知识概念的讲解过程中,往往罗列大量的数学公式不如一个维恩图更能让学生接受,学生通过对维恩图的学习往往能够在很短的时间里了解“包含被包含”等知识概念,这种将抽象化的数学知识转化为具象化的图形更加能够使学生理解和学习。而我们在教学的过程中也应当培养学生的这一思维方式,对于一些代数类题目以及抽象的数学公式,往往通过图形的方式更加容易理解和学习。[3]大专数学的学习培养的是学生掌握知识和应用知识的过程,学生掌握了一定的数学思想对于学生应用数学具有显著的效果,虽然在短期的学习过程中可能效果并不是非常明显,但是随着时间的推移,知识点概念的增多,掌握良好的数学思想能够大大改善学生的学习效率。[4]

(四)课程教学多样化在当前大专数学课堂教学的过程中,本人发现一个最普遍的现象就是教师在讲台上讲,台下学生没有几个认真听的。针对这一问题,笔者认为主要是由于教师的教学方式选择错误,在课堂教学中没有什么趣味性、幽默的小案例,使得课堂教学气氛低下,学生学习效率低。对此,我们应当积极的转变教学对策,跟随时代的步伐,创新教学模式。将一些难以理解的数学公式繁杂的概念通过一些幽默的小案例来引出,激发学生的课堂兴趣,从而提升课堂的教学质量。[5]

三、结语

综合上文所述,我们可以看出在大专数学教学过程中不断的进行教学反思的意义是非常显著的,不仅能够提升课堂教学效率,而且还能够显著提升学生的学习效果,提高学生对数学学习的兴趣,培养学生应用数学的能力,为学生在未来步入社会奠定坚实的基础。我们教师应当树立正确的教学观念,使得学生在经过大专这几年的学习之后能够为社会做出贡献。

参考文献:

[1]夏郁郁.大专数学教学中存在的问题及对策探讨[J].黑河教育,2016,11:87-88.

[2]张彦龙.关于大专数学概率教学模式的研究[J].吉林省教育学院学报(上旬),2014(02):89-90.

[3]苏德矿.高等数学教学如何与中学数学内容及教学方法有效地衔接[J].中国大学教学,2013(05):47-49.

[4]金文琼.基于“翻转课堂”的文科高等数学教学设计研究[D].西安:陕西师范大学,2015.

高中概率反思总结数学 第21篇

概率是日常生活中常用的词汇,是描述随机事件发生可能性大小的度量,本节课通过学生自己所举的例子加深对随机事件、不可能事件、必然事件这三个概念的正确理解;概率是现行课本中新添的内容,在整本书中占有重要的`地位,概率是一个生自动手试验,突破学生理解“随机事件发生的随机性和随机性中的规律性”的难点。同时发现随着实验次数的增加,频率稳定在某个常数附近,然后得出概率的定义,总结出频率与概率的关系明确他们的区别。在这个过程中,加深对知识的理解,使学生养成良好的思考习惯和科学的研究方法,培养学生发现问题和解决问题的能力,运用了试验、观察、探究、归纳和总结的思想方法,符合新课标理念,应大力提倡。

概率因与日常生活联系密切,与现实生活中彩票、股票、日常生产、生活中很多地方要用到概率的知识,学生学起来特别用心,学习热情十分高,虽然有些地方不是特别明白,但学生在合作学习中,把难点一一突破,学习效果很好。

高中概率反思总结数学 第22篇

1突出知识的产生背景

2加强课堂教学的师生互动

数学家的故事以及数学知识的产生历史或应用背景可以为枯燥的数学知识增添一些光泽,但为了提高课堂的教学效果,师生间的课堂互动必不可少。作为教学的另外一个主体———学生因为年龄处于20岁左右,注意力容易分散,如果没有有效的师生互动,学生的注意力很容易就会偏离课堂。那么如何才能达到师生之间的有效互动呢?笔者认为如下方法可行。

课堂提问提问的问题应该是精心设计的,且应具备趣味性和启发性。一般而言,数学课堂的提问问题要和所讲授的公式或者定理紧密联系。例如在讲到“泊松近似定理”时,教师可以首先僵硬地摆出公式。然后提问学生:“你觉得左右两个公式哪一个比较简单”。由于学生高中开始就接触组合公式,所以他们对组合公式比较熟悉,一般情况下他们都会回答比简单。接着,引进例“某人骑摩托车上街,出事故率为,若他独立重复上街400次,求出事故恰好两次的概率。”此时让学生甲、乙到黑板求解该题目,规定甲用组合公式,乙用近似公式。结果乙不用两分钟就可通过查表解决,而甲算半天得不到结果。最后教师可以把用组合公式计算的结果以及近似公式计算的结果给出,比较之后给出以下结论:实际上“泊松近似定理”就是把复杂的计算进行简化的一个工具,并且这种简化具有很强的实际应用,特别是在没有计算机的时代,这种简化优势特别明显。

分组讨论让学生分组讨论问题,可以让每个学生都参与到课堂教学中,增加学生之间的相互交流,加深他们对所学知识的理解和掌握,也提高了学生学习的兴趣。例如在讲授“古典概率模型”时引进例“从一副没有大小王的扑克中,取五张牌,求下列事件的概率:A=出现,B=出现俘虏,C=出现四大天王,D=我们不妨先把公式展示出来,然后分析说明该定理可以陈述成若随机变量Y服从参数为n,p的二项分布,则近似地有Y~N(np,np(1-p))。于是,(2)相比之下,学生对(1)式中的积分和极限符号始终带有恐惧感,此时我们把(1)式化成了一个标准化的(2)式。而学生在高中就开始接触正态分布标准化的过程,所以这一个化简过程可以增加学生对该定理的好感,能够让学生完全掌握这个公式。此时,再引进下面的例子“在3000次抛银币的试验中,求正面向上的次数在500次到2499次之间的概率”。接着给出下面两种不同的解法:出现同色。”然后让学生分组讨论,最后各组选派代表在黑板上写出答案。由于该问题源于实际生活,学生都会积极地参与到讨论中,这样课堂气氛就会活跃起来,也提高了教学效果。

黑板练习随机选择部分学生到黑板进行练习。有些大学教师或许会认为让学生到黑板进行练习是中学教师做的事情,实际上大学数学教学中随机选择学生到黑板练习也是必须并且很有意义的。随机地挑选学生到黑板进行练习可以让教师了解到学生对知识的掌握程度,同时也可以对学生的心理造成一定的影响,对抄袭作业等行为起到一定的抑制作用,并且也可以加强师生间的课堂互动。

3注意教材的灵活处理

首先教材的选择非常重要,要根据学生的授课学时、接受能力进行筛选。但是,即使确定好教材之后,授课内容也必须因材施教。例如在农业院校给农学的学生授课,在概率论方面应该注重理论知识的讲解,里面一些知识的推导必不可少,其逻辑性要求也应该严谨化。这样有助于学生数学思维的锻炼,也有助于提高学生学习数学的兴趣,如前文所介绍的棣莫弗-拉普拉斯定理的讲授。但对于数理统计部分内容,由于其知识推导需要较多较复杂的高等数学知识,所以在对农科数学学生授课过程中就不宜于详细证明和推导,而更应该侧重于思想以及知识的实际应用。例如,在讲授“无交互作用的双因素的方差分析”时,对于公式SST=SSA+SSB+SSE我们可不必进行严格推导,只是粗略地介绍一下其推导原理,即,而更应该注重于SST,SSA,SSB,SSE的意义,并且突出“无交互作用的双因素的方差分析”的应用背景。这样的授课方式,即概率论方面注重于理论推导、数理统计方面注重于实际应用的处理方法主要是根据农业院校的学生文理兼有、数学基础参差不齐并且学时数不多的情况而采用。否则,若把数理统计部分内容也进行严格化证明和推导,那对于很多高中选修文科上来的大一学生来说无疑是难度过大,最终虽然教师授课认真辛苦,但教学效果会大打折扣。因此,教师应该根据不同的学科需要并且根据不同的学生水平选择适当的教材,并合理地处理教材中的授课内容。

4留意知识的前后联系

概率论与数理统计是数学学科的一个分支,因此在授课过程中教师也应该时时留意知识的前后联系。这里所讲“知识的前后联系”主要有以下两种情况:第一,新旧概念的区别联系。当讲授到一个新概念,发现它与某些旧概念有密切联系或者容易产生混淆时就应该对两者进行对比辨析。例如,当讲授到“相互独立”概念时,很多学生都会把它与“互不相容”概念联系在一起或者对这两个概念产生混淆。此时,教师应该通过例子说明“相互独立”与“互不相容”没有任何联系;第二,新旧结论的区别联系。当讲授到一个新结论,发现它和原来的结论容易产生混淆时,教师也应该通过例子对两者进行辨析。例如在讲授完“独立同分布的中心极限定理”之后,很多学生就会把它和“切比雪夫不等式”混淆。此时不妨引进下面例子“一零件包括10部分,每部分的长度是一个随机变量,相互独立,且具有同一分布。其数学期望是2mm,均方差是,规定总长度为20±时产品合格,试求产品合格的概率。”然后让学生用“独立同分布的中心极限定理”和“切比雪夫不等式”来求解(也可以分组讨论)。通过这个例子可以很好地让学生明白“切比雪夫不等式”一般用于理论研究,得到的结果比较粗糙(该例用“切比雪夫不等式”将得到一个毫无疑义的但并无矛盾的不等式)。相比之下,“独立同分布的中心极限定理”更具有实际应用的价值。除此之外,教师还应在授课过程中注意到新旧知识的前后承接或者同一概念的前后变异。例如,在讲授到数理统计知识时书本往往针对于正态总体进行展开,这时候就要复习中心极限定理以及通过实例来说明现实生活中大部分的随机变量都服从或者近似地服从正态分布,因此数理统计基本上都是针对正态总体进行研究。另外,在讲授到回归分析中的样本相关系数应该和概率论中所讲授的两个随机变量的相关系数进行对比,这样就可以让学生更好地理解样本相关系数的作用以及定义的形式。总而言之,在授课过程中教师应时刻留意知识的前后联系,这样可以使学生对新旧知识有更好的理解和认识,也加深他们对新旧知识的记忆和掌握。

5注重理论的实际应用

高中概率反思总结数学 第23篇

《列举法求概率》这一章主要教学目标是通过学生猜测——试验并收集试验数据——分析试验结果等活动来了解必然事件,不可能事件和不确定事件发生的可能性,了解事件发生的等可能性及游戏规则的公平性,会对随机事件发生的概率进行计算。

通过课堂复习教学我有以下感受:

一、学生能够通过观看演示试验来了解三种事件发生的可能性,能通过试验了解游戏规则的公平性和对两种概型进行简单的计算。

二、通过演示试验及课件大大激发了学生学习的积极性,提高课堂效率。

三、教学方式的开放:利用小组合作学习的方式,让学生之间建立了相互依存的形式。在小组合作学习的过程中,学生各自发表了自己的见解,互相评价,互相完善,在自主探索中发现概念的形成过程,提升学生的整体认识水平。

存在的问题

教具的.缺乏导致学生不能亲自动手试验,只能由我演示,学生观看得出结论,使得学生对不确定性体会不深。为此,我不得不通过口述在加课件演示重复讲解,使学生加深印象。在分组探讨、讨论的活动中,每个小组的人数较多,而学生的好奇性很大,导致课堂比较的“乱”,虽然时间有点仓促,但是效果还是不错。

高中概率反思总结数学 第24篇

六、解析几何

这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题

同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学直线方程知识点:什么是直线方程

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

高中概率反思总结数学 第25篇

高中数学课堂有不同的课型,不同课型中学生学习的侧重点不同。因此,在不同的数学课型上运用核心问题教学模式促进学生深度体验的侧重点也有所不同。

一、在概念公式课中设计探究类核心问题

(一)概念公式课的基本认识

数学概念和公式是数学学科的基石,是学生形成数学知识结构、解决数学问题、形成数学能力和素养的基础。

传统数学概念公式课通常重结论、轻过程,其教学流程大致是这样的:先由教师通过课件或讲解得出概念公式教师指出应用这一概念公式解决相关问题时应注意的要点教师分析、讲解典型例题学生完成练习对所学概念公式加以巩固。这种教学方式中前三个环节都是“教师讲、学生听”,只有最后一个环节是学生相对主动地思考,因此学生往往在前三个教学环节中处于被动地位,如果教师讲得够明晰,则学生能听得懂,但到了最后自己完成练习的环节时,往往会因前面环节的体验不深而导致下笔困难,出现听得懂而做不起题的情况。

针对这一现状,我在概念公式课的教学中尝试运用以核心问题促进学生体验的教学模式,希望以恰当的核心问题促进学生在概念形成、公式推出的过程中获得体验。考虑到学生获取数学概念、数学公式不应是单纯地记住与获取结果,而是要在体验基础上主动建构知识的同时,获得情感、态度、价值观的相应体验。因此,必须在概念公式的学习中关注它们形成的背景,一定程度上经历它们形成的过程。基于这样的认识,我认为数学概念公式课的核心问题应多以“学科问题+学生活动”组成的探究类核心问题呈现。

(二)教学实践与反思

下面是以核心问题促进学生体验的教学模式对《直线的倾斜角与斜率》这节课的实践与思考。

《直线的倾斜角与斜率》是高中平面解析几何的入门课。在这一节课的教学过程中,教师往往是直接给出直线的倾斜角和斜率的定义;然后板演斜率公式的推导,给出公式的几点注意事项;接下来就对公式进行简单或变式应用。这样传授,首先,学生对解析几何的产生、具有的历史地位很模糊,不理解为什么非要用代数方法解决几何核心问题;其次,学生对为什么要采用教科书上的定义方式来定义直线的倾斜角和斜率一无所知;第三,不了解用直线上的点坐标计算斜率的真正意义,对公式只会模仿使用,不能进行灵活的运用;第四,学生在后续学习圆、椭圆、双曲线、抛物线时,使用坐标法的意识和能力都非常薄弱。最终致使解析几何问题成为学生最棘手、最难解决的问题。

为了实现学生在体验中学习规律、习得方法,本节课设计了核心问题:“在平面直角坐标系中,探索确定直线位置的几何要素。并用代数方法表示它们。”在这一核心问题的激发下,学生先根据已有的相关知识分析确定直线位置的要素,发现有两个方案:一是两个定点(点已数化);二是一个定点和倾斜角,教师就可借助几何画板让学生理解倾斜角的定义;并发现倾斜角的范围。学生进一步就可以在平面直角坐标系下,探究直线上两点坐标与倾斜角的关系,此后通过学生小组活动,发现可以通过借助直角三角形,利用锐角三角函数定义求解,或者借助向量利用任意角三角函数定义求解这两条途径来探究,接下来探究完成后,多个小组的学生先后自愿上台展示其小组探究的结果,并以小组活动表的形式记录下来;台下的学生对台上演示的学生的方案进行适时的提示与评价;得到直线上两点坐标与倾斜角的关系式tan ?琢=■,然后教师再水到渠成地给出斜率的定义k=tan ?琢(?琢≠90°)。

由于对“直线的倾斜角与斜率”这两个概念及“斜率公式”建立有了较深入的学习体验过程,学生对概念的理解、公式的运用就比较自然而到位,不会感觉十分困难了。不仅如此,几乎所有学生都能很准确地感受到斜率与倾斜角之间的关系。由于有了前述体验及聚集点,在下一课时请同学们解决典型的相关问题时,就很容易了,学生确实真正地获得了较为深刻的体验。

二、在习题课中设计方法类核心问题

(一)习题课的基本认识

学生在数学学习中,完成适当的习题来加深对相关知识的体验、理解是必不可少的,习题课教学也就成为必需的教学组成部分。

为了更好地发挥习题课教学的功效,我也尝试在习题课教学中运用以核心问题促进学生体验的教学模式,加深对数学概念、公式、定理等的理解,逐渐形成数学学科素养。考虑到高中数学有选择、填空、计算三种题型,学生解答数学问题感到困难的原因也是多方面的。因此,教师要在每节习题课前首先分析教学内容与学情,确定本节习题课主要解决的问题以及学生在复习课体验中应习得的主要方法;在此基础上再确立相应的激发学生活动体验的核心问题。基于这样的认识,我认为高中数学习题课教学中的核心问题应多以“解题方法+学生活动”的方法类核心问题呈现。

(二)教学实践与反思

下面是我在进行高三复习教学中针对学生审题能力较弱这一现状,以核心问题促进学生体验的教学模式进行《高中数学试题的审题要点》习题课的实践与思考。

一方面,通过学情分析发现,高三学生觉得数学题难、不易下手、易错等是由于解题的最初环节——审题不清造成的;以往的高三复习教学中,这一问题通常是在知识、方法的复习中就所遇到的题目较为零散地加以讲解,这样做的结果是,某些学习主动,反思、总结能力强的同学能将分散在各部分复习中出现的审题关键加以关注、进行反思、总结,但更多的同学对此不够重视,没有进行反思、总结。另一方面,高三阶段的复习应对所学知识、知识背后的思想方法加以复习、总结,也应对解题方法、技巧予以关注,加以总结。

为让更多的同学能对审题中可能出现的问题加以关注,主动反思,总结出与自身认知结构相适应的审题方法加以内化,因此设计了核心问题:“审下列数学题组,归纳审题要点”,引发学生的主动学习活动,激起同学们对审题的足够重视,能在后续复习中对审题环节主动关注、总结,有效、甚至高效地减少解题最初环节——审题造成的障碍。所给数学题组由下列三道题目构成:

(1)若3sin2 ?琢+2sin2 ?茁=2sin2 ?琢,求cos2 ?琢+cos2 ?茁的范围。

(2)道路旁有一条河,河对岸有塔ab高15米,只有测角器和皮尺作测量工具,能否求出道路与塔顶之间的距离?

(3)某超市为了获取最大利润做了一番实验:若将进货单价为8元的商品按10元/件的价格出售时,每天可销售60件,现在采用提高销售价格、减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚得最大利润?并求出最大利润。

通过个人思考、小组讨论,教师的及时指导,同学们还真就三道题目归纳出了一些审题的要点,例如:审题时速度要慢,争取二次审题,明确问题的条件与结论,善于挖掘隐含条件,能进行文字、符号、图形三者之间的转换等要点。

在教学实施中,由于这样的课对执教老师和学生来说都是全新的,虽然教师随着研讨过程的不断深化,观念有所转变,但学生观念的转变不到位,对这种方式的习题课不太适应,加上教师对这种方式的习题课引导经验还不够多,因此课堂实施中进入到“审题要点归纳环节”时,学生虽然有一些收获,但主动参与还显得不够。这一方面反映出我们平时的习题课教学中对通用方法的教学不够,另一方面更提醒我们在今后的习题课教学中,应引导学生在体验基础上更多关注处理习题时对通用有效方法的反思、小结、归纳、提升,以此来实现数学学习中自觉地对处理核心问题的方法加以反思、归类、总结,进一步提高学习的有效性。

三、在复习课中设计能力类核心问题

(一)复习课的基本认识

学生学习过程中对知识的掌握、方法的习得,都需要适时复习巩固,温故知新,因此,高中数学教学中复习课是必不可少的,到了高三总复习阶段更是如此。

为了更好地发挥复习课教学的功效,我还尝试在复习课教学中运用以核心问题促进学生体验的教学模式,希望能以恰当的核心问题达成学生在课堂上更为深度的体验,在复习旧知、强化方法的同时养成良好的复习习惯,逐步形成较强的学习能力。复习课学习中不应仅仅停留在新课学习阶段的要求上,而应在温故基础上知新,要在巩固知识、强化方法的基础上使自己的学习态度、学习习惯、学习能力等在不断加深的体验中逐步增强。基于这样的思考,我认为在高中数学复习课中的核心问题应多以“复习方法+学生活动”的能力类核心问题呈现。

(二)教学实践与反思

下面是我在进行高三复习教学中,以核心问题促进学生体验的教学模式进行《概率与统计》复习课教学的实践与思考。

《概率与统计》内容是中学数学的重要知识,与高等数学联系非常密切,是进一步学习高等数学的基础,也是高考数学命题的热点内容。就学生学习情况来看,有两方面的因素:有利因素是这部分内容与其他章节联系不是很大,所以大部分学生能够较好掌握,甚至还有一些学困生也能够对章节知识有一些了解,故每次考试、练习中学生对完成《概率与统计》章节的试题有充分的信心。不利因素是这部分知识非连贯知识,因此有部分学生对各种概率事件的类型及概率的意义的理解程度不够,从而导致学生对这部分的知识、方法掌握不熟练、迁移能力差,在试卷答题阶段,忽略试题的文字表述,所以在考试中常有答案正确但缺乏规范导致丢分。

为了让学生对本部分知识的掌握情况有深层次的体验(包括知识与知识、知识与方法、知识与学科能力关联的体验),从而更好地调动自己主动、自主复习的积极性,所以本节课设计了核心问题:改正《概率与统计》中已完成的练习,完善章节知识、方法并形成有“个性”的复习资料。课上按照以下四个环节展开:(1)参与试题评讲活动,改正答案、记录要点;(2)反思已改正的试题;(3)发现老师评讲归类的方式,小结解决每类问题的方法、关键;(4)形成有“个性”的复习资料。课后,学生根据自己在本节评讲课前后的强烈对比体验,自主对这部分知识进行了梳理,进行了适合自己现阶段学习情况的补充、整理,完成并上交了自己个性化的复习资料。

对按要求上交的41份作业统计的情况如下:仅对《概率与统计》中典型问题进行了补缺梳理的同学有13人,占上交人数的;仅对《概率与统计》中涉及的相关概念进行了补缺梳理的同学有8人,占上交人数的;仅将《概率与统计》这部分知识形成结构的同学有10人,占上交人数的;对《概率与统计》中涉及的概念、规律以及典型问题均进行了补缺梳理的同学有5人,占上交人数的;既将《概率与统计》这部分知识形成了结构,又对涉及的典型问题(包括解题方法)进行了补缺梳理的同学也有5人,占上交人数的。

从以上反馈信息看,一方面,同学们在较长时间的自主复习体验中,逐步认识到“个性化复习资料的功用是为了帮助自己更好地复习、提升,而非为了交给老师、应付老师检查”。因此,上交的复习资料均能做到不照搬资料、不照抄老师的笔记,针对自己现阶段的实际情况完成。这也反应出学生自主学习的意识和能力已初步形成,在三轮复习教学中应进一步巩固、强化。另一方面,虽然在对主干知识进行的单元复习中,老师均在本节的第一节课展示了自己对本单元相关知识的结构化认识以及本节知识与排列、组合知识的关联,但同学们在这方面的意识和能力还显得不够。这反映出同学们在分析核心问题时的关联意识不够,还没习惯于用联系的观点看待自己存在的核心问题,相信通过我们在教学中的不断反思、改进,和学生一道共同努力,同学们定会在不断加强知识掌握的同时,为自己的可持续发展更好地奠基。