操作系统对换总结 第1篇
页式内存管理,内存分成固定长度的一个个页片。操作系统为每一个进程维护了一个从虚拟地址到物理地址的映射关系的数据结构,叫页表,页表的内容就是该进程的虚拟地址到物理地址的一个映射。页表中的每一项都记录了这个页的基地址。通过页表,由逻辑地址的高位部分先找到逻辑地址对应的页基地址,再由页基地址偏移一定长度就得到最后的物理地址,偏移的长度由逻辑地址的低位部分决定。一般情况下,这个过程都可以由硬件完成,所以效率还是比较高的。页式内存管理的优点就是比较灵活,内存管理以较小的页为单位,方便内存换入换出和扩充地址空间。
Linux内核针为使用原来的3级列表(PGD->PMD->PTE),做了折衷。即采用一个唯一的,共享的顶级层次,叫PML4。这个PML4没有编码在地址中,这样就能套用原来的3级列表方案了。不过代价就是,由于只有唯一的PML4, 寻址空间被局限在(239=)512G, 而本来PML4段有9位, 可以支持512个PML4表项的。现在为了使用3级列表方案,只能限制使用一个, 512G的空间很快就又不够用了,解决方案呼之欲出。
在2004年10月,当时的X86_64架构代码的维护者Andi Kleen提交了一个叫做4level page tables for Linux的PATCH系列,为Linux内核带来了4级页表的支持。在他的解决方案中,不出意料地,按照X86_64规范,新增了一个PML4的层级, 在这种解决方案中,X86_64拥一个有512条目的PML4, 512条目的PGD, 512条目的PMD, 512条目的PTE。对于仍使用3级目录的架构来说,它们依然拥有一个虚拟的PML4,相关的代码会在编译时被优化掉。 这样,就把Linux内核的3级列表扩充为4级列表。这系列PATCH工作得不错,不久被纳入Andrew Morton的-mm树接受测试。不出意外的话,它将在版本中释出。但是,另一个知名开发者Nick Piggin提出了一些看法,他认为Andi的Patch很不错,不过他认为最好还是把PGD作为第一级目录,把新增加的层次放在中间,并给出了他自己的Patch:alternate 4-level page tables patches。Andi更想保持自己的PATCH, 他认为Nick不过是玩了改名的游戏,而且他的PATCH经过测试很稳定,快被合并到主线了,不宜再折腾。不过Linus却表达了对Nick Piggin的支持,理由是Nick的做法conceptually least intrusive。毕竟作为Linux的扛把子,稳定对于Linus来说意义重大。最终,不意外地,最后Nick Piggin的PATCH在版本中被合并入主线。在这种方案中,4级页表分别是:PGD -> PUD -> PMD -> PTE。
操作系统对换总结 第2篇
为了防止不同进程同一时刻在物理内存中运行而对物理内存的争夺和践踏,采用了虚拟内存。 虚拟内存技术使得不同进程在运行过程中,它所看到的是自己独自占有了当前系统的4G内存。所有进程共享同一物理内存,每个进程只把自己目前需要的虚拟内存空间映射并存储到物理内存上。 事实上,在每个进程创建加载时,内核只是为进程“创建”了虚拟内存的布局,具体就是初始化进程控制表中内存相关的链表,实际上并不立即就把虚拟内存对应位置的程序数据和代码(比如.text .data段)拷贝到物理内存中,只是建立好虚拟内存和磁盘文件之间的映射就好(叫做存储器映射),等到运行到对应的程序时,才会通过缺页异常,来拷贝数据。还有进程运行过程中,要动态分配内存,比如malloc时,也只是分配了虚拟内存,即为这块虚拟内存对应的页表项做相应设置,当进_正访问到此数据时,才引发缺页异常。 请求分页系统、请求分段系统和请求段页式系统都是针对虚拟内存的,通过请求实现内存与外存的信息置换。
操作系统对换总结 第3篇
1、首先查看是哪些进程的CPU占用率最高(如下可以看到详细的路径)
定位有问题的线程可以用如下命令
2、查看JAVA进程的每个线程的CPU占用率
3、追踪线程,查看负载过高的原因,使用JDK下的一个工具
jstack 查出来的线程ID是16进制,可以把输出追加到文件,导出用记事本打开,再根据系统中的线程ID去搜索查看该ID的线程运行内容,可以和开发一起排查。
由于操作系统面试的内容较多,因此上一篇文章、本篇文章以及接下来的文章都是对面试中常见的操作系统问题进行了简单的总结,一方面是为了方便自己以后面试的复习,另外也是给大家再次面试相关岗位的时候提供复习方向以及思路解答。这里就需要我们对操作系统有一个较为深层次的理解。于是,我们在准备的时候,首先就应该夯实基础,只有这样才能在众多的面试者中脱颖而出。另外,作为在计算机行业工作的从事者,掌握一些基础的操作系统的知识是很有必要的,也是我们的基本素养。最后希望大家不断进步,都能尽早拿到自己比较满意的offer!!!!继续加油,未来可期!!!!
操作系统对换总结 第4篇
分页地址中的地址结构如下:
31 12 11 0
它包含两部分:前一部分是页号P,后一部分是位移量W,即页内地址。如图我们可以知道每个块大小是2^12也就是4KB。而31-12位是页号所以页号是2^20也就是1M页。