安承悦读

如何学习好数学建模

admin
导读   数学建模就是用数学的思维方法解决一些实际问题,具体地说就是用数学的语言去描述一个实际问题,从而建立一个数学模型,这个过程就是数学建模。下面小编就同大家聊聊关于如何学习好数学建模的问题,希望有所帮助!  1如何学习好数学建模  利用数学建模的方法可以解决生活中的实际问题,那么我们先来了解一下怎样将

如何学习好数学建模

  数学建模就是用数学的思维方法解决一些实际问题,具体地说就是用数学的语言去描述一个实际问题,从而建立一个数学模型,这个过程就是数学建模。下面小编就同大家聊聊关于如何学习好数学建模的问题,希望有所帮助!

  1如何学习好数学建模

  利用数学建模的方法可以解决生活中的实际问题,那么我们先来了解一下怎样将数学建模引入小学的教学课堂上。解答数学题最基本的方式就是四个步骤:设、列、解、答,小学数学的应用题也是按照这几个步骤来作答的,所以学生对它已经不陌生,关键是数学建模的思想,让学生根据观察和逻辑思维以及数学知识的运用,找出题目中已知与未知之间的关联,还要让学生自己验证、测试所得到的答案是否正确,这种循环往复的求解过程可以帮助学生形成自己的知识体系,并在不断的学习过程中完善自身的知识结构。

  想要学好数学建模思想,需要学习的内容特别多,因为数学建模里面包含的范围非常广,有公式、原理、定义、方程等一些数学知识,还包括具体问题中涉及的不同学科领域的知识,所以学生需要掌握的知识也特别多。在学习数学建模的过程中,往往会遇到很多没见过的知识,需要查阅资料等,所以教师要培养学生坚持不懈的精神、迎难而上的品质,不能遇到了没有见过的题或者不会的知识就有放弃学习数学建模的念头。老师要及时地跟学生及其家长沟通、交流,了解孩子的内心想法,不是一味地灌输理论知识,懂得跟学生谈心,讲道理,家长也要向老师汇报学生的学习状况和家庭作业的完成情况,如果基本的课内知识都消化不了,就先让学生完成好家庭作业,做到不拖延,养成良好的习惯。老师要根据家长的反馈情况进行改进培养学生的方法,做到贴合实际地教学。

  将数学建模思想引入小学课堂教学是一件越来越被人们接受的事情,刚开始大家一定会觉得很新颖,所以教师一定要有主动性,全方面了解数学建模思想,让这个思维方式同自身的教学经验进行结合,将繁冗的理论知识用通俗易懂的语言表达出来,毕竟受众是小学生,他们的理解能力、接受能力还有待提高,如果一开始就传授深奥的知识,容易引起学生的逆反心理,对于学习感到有压力,造成不愿意学习的后果,所以教师要慢慢地让学生适应这种新方式的教学方法。

  2小学数学建模教学的基本模式

  1、为学生提供一个比较详实的问题背景。由于小学生的生活经历有限,对一些实际问题的了解比较含糊,这不利于学生对实际问题的简化和抽象,所以条件许可的话可以组织学生参与一些相关的社会调查和实践活动,让学生亲身体验生活,亲自经历事情的发生和发展过程,让学生主动获取相关的信息和数学材料,从而培养学生对事物的观察和分辨能力,增强学生的数学意识。以上做法不但能为学生数学建模提供真实可信的感性材料,而且可以推动学生关心社会、了解社会、体验人生。

  2、发挥学生的想象对实际问题进行简化。儿童有无限的创造力,虽然他们所掌握的数学知识是有限的,但他们的想象力是无限的,他们敢想敢做善于异想天开,这对简化实际问题,构建数学模型是十分有利的。我曾例举过两个数学老师和一个六年级学生同做一道数学应用题的例子,这道应用题是这样描述的:“某市举行篮球选拔赛,报名参赛的球队有20个,比赛采用淘汰制(没有平局),最终决出一名冠军参加省级篮球比赛,问一共要比赛几场?”教师在简化这个实际问题时先给每个参赛队分别编上号,再根据比赛的顺序把实际问题简化为如下形式:而学生在简化这个实际问题时,抓住“淘汰”这个词进行简化。学生是这样想的:因为是淘汰赛,所以无论是谁和谁比,每赛一场必定淘汰一个队。因此学生把这个实际问题简化为减法。我们先不说他们最终构建模型如何,从简化的角度讲,显然学生比教师的想法更简便、更明了。上例中由于教师受日常比赛模式的影响,对这个实际问题有了定势思维,所以他们在简化这个实际问题时,免不了受比赛顺序的影响,而学生对如何安排比赛顺序没有经验,所以不会受比赛顺序的干扰,他们就能抓住问题的本质“淘汰”进行想象和简化。

  3、运用数学知识构建合理的数学模型,并解读数学模型。从以上例子中我们看到了两种不同的简化方式,接下来的工作就是对简化了的实际问题构建数学模型,一般来讲,如果数学模型中所用的数学工具愈简单,那么这样的数学模型愈有价值,先看教师的数学模型:20÷2=10 10÷2=5(场)5÷2=2(场)……1 (2+2)÷2=1(场)……1(1+1)÷2=1(场) 解读模型:10+5+2+1+1=19(场)再看学生的数学模型:20-1。解读模型:20-1=19。从以上两种数学模型分析,教师的数学模型繁琐,采用的数学工具也比学生的复杂,相比之下显然学生的数学模型比教师的价值大。

  3数学建模学习方法

  1.数学建模促进数学思维的发展

  数学建模与数学思维能力的发展是当前教学课堂的热门话题。数学建模法是一种极其重要的思想方法,是培养学生实际应用数学的能力与意识的重要途径。因此可以结合正常的教学内容,一方面渗透建模思想,另一方面根据教学内容的特点确定相应的思维训练侧重点,创设出集建模思想渗透与思维训练于一体的教学方案。达到深化知识理解和发展数学思维的能力,激发学习兴趣,强化应用意识的目的。下面通过用数学建模方法解实际问题来进一步阐述数学建模对促进数学思维的作用。

  2.数学建模推进数学知识在实际应用的力度,同时让学生在建模中感受到数学的应用,激发数学学习的自主性与创新性

  建模能力是一个解题者各种能力的综合运用,它涉及文字理解能力,对实际问题的熟练程度,最重要的是对相关数学知识的掌握程度。模型在表达问题的本质方面具有最突出的的作用,它将无序状态转化为明确的数学问题,然后构建数学模型,解决实际问题,增加学生对数学的学习兴趣,以及激发学生的创新能力。下面通过用数学建模方法解实际问题来进一步阐述数学建模在激发学生数学学习的自主性与创新性的作用。

  3.以数学建模为手段培养学生的自我评价能力