安承悦读

圆柱圆锥经验总结(必备31篇)

admin
导读 3.一个圆柱和圆锥等底等高,圆柱的体积是立方分米,圆锥的体积是( )立方分米。24.一个圆柱和一个圆锥,底面直径都是6厘米,高是12厘米。它们的体积一共是多少立方厘米?16、一个圆柱和一个圆锥体积相等,底面积也相等,圆柱高12厘米,圆锥高多少厘米?

圆柱圆锥经验总结 第1篇

教学目标:

1、使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图;认识圆柱和圆锥的底面、侧面和高,并会测量高。

2、通过观察、操作、思考、讨论等活动,培养同学们发现问题、分析问题、解决问题的能力。

3、从实际生活入手,通过解决实际问题,发展学生的空间观念。

教学重点:

认识圆柱和圆锥的高,并会测量高。

教学过程:

一、创设情境,引入新课。

师:前面我们学习了一些平面图形和立体图形,(出示)这是一个长方形,请同学们动脑筋想一想,当它沿一条边旋转一周,会形成什么图形?

师:这个三角形沿一条直角边旋转一周,会形成什么图形?(板书课题)

二、探索尝试,解释交流。

1、感知圆柱、圆锥。

师:日常生活中,有很多圆柱、圆锥形状的物体,大家看,这个茶叶盒的形状就是圆柱,这个积木的形状就是圆锥。请同学们想一想,生活中还有哪些物体的形状是圆柱或者圆锥?师:老师也收集了一些圆柱、圆锥物体的画面,当去掉这些画面的颜色和图案,就得到了圆柱、圆锥的立体图形。

师:圆柱、圆锥有什么特征呢?

2、认识圆柱的各部分名称。

师:我们先来研究圆柱有哪些特征?请同学们用看一看、摸一摸、量一量等方法来研究圆柱的特征,看哪个小组合作的好,发现的多。

(1)哪个小组先来说一说你们的发现?

(2)介绍圆柱各部分的名称,让学生结合圆柱各部分的名称再来说一说圆柱的特征。

(3)质疑:你是怎样知道两个底面相等的?侧面是粗细均匀的?

(4)圆柱两个底面之间的距离叫圆柱的高。

圆柱的高有多少条?这些高的'长度有什么关系?

(5)在日常生活中,硬币的高叫什么?钢管横着放高叫什么?圆柱形水井的高叫什么?

(6)结合实物,师生一起整理圆柱的特征。

(7)谁能结合板书,完整的说一说圆柱的特征。

3、探究圆锥的特征。

(1)我们已经知道了圆柱的特征,下面请同学们结合圆柱特征的研究方法,来研究圆锥有哪些特征?

(2)哪个小组来说一说你们的发现?

(3)说一说圆锥的特征。

4、对比。

师:我们已经知道了圆柱、圆锥的特征请同学们结合板书,想一想,圆柱、圆锥有什么相同点和不同点?

三、拓宽应用。

1。圆柱上下面是两个()的圆形,圆锥的底面是一个()形。

2。圆柱有()个面是弯曲的,圆锥的侧面是一个()面。

3。圆柱两个底面之间的距离叫圆柱的(),一个圆柱有()条高。

4。从圆锥的()到()的距离是圆锥的高,一个圆锥有()条高。

四、总结

这节课你有什么收获?

圆柱圆锥经验总结 第2篇

1、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。

2、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了平方分米,那么这根木头原来的体积是多少?

3、用一块长厘米、宽厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少?

4、将一块长方形铁皮,阴影的部分,刚好制成一个油桶,求这个油桶的体积。

5、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求这个圆柱体木块的体积。

6、一个底面积是10平方厘米的圆柱,侧面展开后是一个正方形,求这个圆柱的侧面积。

7、在一个正方体纸盒中恰好能放入一个体积为立方厘米的圆柱体卷纸,求这个正方体的容积。

8、求圆锥的侧面积和体积。(单位:cm)

9、小明新买了一支净含量54cm3的牙膏,牙膏的圆形出口的直径为6mm,他早晚各刷一次牙,每次挤出的牙膏长约20mm,这支牙膏估计能用多少天?

10、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米,两个圆柱各高多少厘米?

11、在一只底面半径为20cm,高为40cm的圆柱形玻璃瓶中,水深16厘米,要在瓶中放入长和宽都是16cm.,高30cm的一块长方体铁块。使其一面紧贴玻璃瓶底面。如果把铁块横着放入玻璃瓶完全浸没水中,瓶中的水会升高多少cm?如果把铁块竖着放入玻璃瓶,瓶中的水将会升高多少cm?

12、一个直角三角形的三边长度为3厘米,4厘米,5厘米,分别以这三条边为轴旋转一周形成的立体图形。它们的体积各是多少?

13、把一个圆柱体切开,拼成一个与它等底等高的长方体,这个长方体的表面积比圆柱体多20平方厘米,若圆柱的底面周长是15厘米,圆柱的体积是多少立方厘米?

14、甲乙两个圆柱体容器,底面积之比是2:3,甲中水深6厘米,乙中水深8厘米,现在往两个容器中加入同样多的水,直到两容器中的水深相等,求这时容器中水的高度是多少厘米?

15、一个圆柱与一个圆锥的体积相等,圆柱的高与圆锥的高之比是4:9,圆锥的底面积是20平方厘米,圆柱的底面积是多少平方厘米?

圆柱圆锥经验总结 第3篇

第二课时

圆柱和圆锥

教学目标:

1、使学生学会通过假设和调整来解决问题,进一步的提升思维水平。

2、在运用假设和调整来解决问题的过程中,体会假设与调整的多样性。

3、在解决问题的过程中,获得解决问题的成功经验,提高学好数学的`信心。

重点难点:

学会假设和调整的策略来解决问题,并体会假设与调整的多样性。

教学过程:

一、谈话导入

上节课我们学习了运用已学的多种策略来解决问题,通过对条件的进一步分析和转化,使一个问题多种思维、多种解法。今天我们继续来学习解决问题的策略。(板书课题:假设的策略)

二、探究新知

1、教学例2(课件出示例2)

全班42人去公园划船,租10只船正好坐满。每只大船坐5人,每只小船坐3人。租的大船、小船各有多少只?

提问:解决这个问题,你准备选择什么策略?

学生小组讨论。

画图法。

先画10只大船坐50人,再去掉多的8人。

列举法。

从大船有9只、小船有1只开始,有序列举。并填写右表。

(1) 列表假设。

假设大船和小船同样多,那么我们要如何调整算出大船和小船各有多少只?

① 出示表格。

②借助表格调整。

第一步:假设租5只大船和5只小船,就会比42人少2人。

第二步:还少2人,也就是这2人还没有上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整?

先想一想,再在小组里交流想法,然后在表中填一填。

第三步:集体交流,得出方法

引导思考:少了2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多坐2人,22=1(条),所以调整为小船4条,大船6条。

② 检验结果。学生口答检验方法。

三、巩固练习

1、完成第29页练一练。

(1)引导学生先用第一种方法,根据要求提示动手操作,独立完成。

(2)用列表假设的方法再进行思考练习。

学生交流,并汇报想法。

2、完成练习五第4题。

根据题中所给的假设学生自主调整,并汇报调整想法。

四、课堂小结

通过本节课的学习,我们知道了哪些解决问题的策略?你有哪些收获?

五、课堂作业:练习五第5题。

圆柱圆锥经验总结 第4篇

教学目标:

1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。

2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。

3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。

教具学具:

1、教师准备大小不同的圆柱和圆锥以及其他几种形体的实物及模型。

2、学生准备圆柱和圆锥实物。

3、教师准备长方形、直角三角形和半圆形、梯形的小旗。

教学过程:

一、创设情境 导入新课

做你来说我来猜的游戏。(就是中央电视台幸运52的记时抢答)随着屏幕上出现一组漂亮的几何图形,一名同学根据已有知识在描述着它的特征,另一名同学在认真的猜着,复习长方体和正方体。然后屏幕上出现圆柱体和圆锥体,由于学生还没学圆柱和圆锥。造成下面的学生无法猜出。此时学生自然会产生想深刻认识圆柱体圆锥的特征这一要求。

(同学们知道的'真不少),这节课我们再来进一步了解圆柱和圆锥。

板书课题:圆柱和圆锥的认识。

二、教学新课

㈠认识圆柱、圆锥。

1、请同学们把自己准备的实物中的圆柱形物体和圆锥形物体分开。

2、仔细观察这些物体的形状,你能在纸上把他们画出来吗?谁愿意把

自己的作品展示给大家看!

(贴出学生画的立体图)

教师:比较这几个同学的画法,你有什么想说的吗?

3、教师:刚才同学们通过观察、想象,画出圆柱和圆锥的立体图形。那

么,你还能回想一下,生活中还有哪些物体的形状是圆柱或圆锥吗?

(二)探究圆柱和圆锥的特征。

圆柱的特征.

教师:通过刚才的交流,可以看出大家对圆柱、圆锥已经有了进一步的认识,那么接下来咱们再一起来探讨圆柱和圆锥的特征。

1、请你拿起桌上的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。

(教师在学生交流时,深入到学生中,倾听孩子不同的见解,做到心中有数)。

2、集体交流:(学生交流时语言可能不严密,教师随时正确引导)

谁想把自己的发现告诉大家!学生交流,教师系统整理。

⑴圆柱的上下两个面是面积相等的圆,这两个圆面就叫做底面。

⑵圆柱还有一个曲面,这个曲面叫做侧面。想一想,这个曲面展开会是什么形状?想个法子试一试!

(3)上下两个底面之间的距离叫做圆柱的高。想一想,圆柱的高有多少条?

认识圆锥的特征

教师:刚才同学们用不同的方法,发现了圆柱体的特征,那么大家能不能继续努力,来寻找圆锥体的特征呢?

1、拿出桌上的圆锥形实物,摸一摸、看一看、比一比,你又有什么发现?将自己的发现与同桌交流。

2、集体交流:

⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。猜想一下,圆锥的侧面展开又会是什么图形?试试看!

⑵从圆锥的顶点到底面圆心的距离是圆锥的高。想一想圆锥的高有几条?

三、巩固练习

同学们通过努力,找到了圆柱和圆锥的特征。下面做一组练习题看看大家对刚才的知识掌握的怎么样。请打开课本翻到48页,看第一题。

1、完成自主练习第1、2题。(注意倾听学生不同的意见,并让他们说出自己判断的理由。)

2、完成自主练习5。(利用课前准备的各种小旗)。

3、完成自主练习4,6。

四、实践。

1、让学生动手量圆柱、圆锥的高。

圆柱圆锥经验总结 第5篇

小学数学圆柱和圆锥的关系知识点

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高 ,体积相差2/3Sh

题型总结

①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积

分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化

分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比

②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)

③横截面的问题

④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体

⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3

小学数学常考定义知识点

1、什么是图形的周长?

围成一个图形所有边长的总和就是这个图形的周长。

2、什么是面积?

物体的表面或围成的平面图形的大小叫做他们的面积。

3、加法各部分的关系:

一个加数=和-另一个加数

4、减法各部分的关系:

减数=被减数-差 被减数=减数+差

5、乘法各部分之间的关系:

一个因数=积÷另一个因数

6、除法各部分之间的关系:

除数=被除数÷商 被除数=商×除数

数学质数相关定理

1.在一个大于1的数a和它2倍之间,即区间(a,2a)中必存在至少一个素数。

2.存在任意长度的素数等差数列。(格林和陶哲轩,)

3.一个偶数可以写成两个数字之和,其中每一个数字都最多只有9个质因数。(挪威布朗,19)

4.一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)

5.一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(中国,1968年)

6.一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1+2)(中国陈景润)

圆柱圆锥经验总结 第6篇

教学目标:

1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

教学重点:

圆柱、圆锥表面积、体积的计算

教学难点:

圆柱、圆锥的特征和它们的体积之间的联系与区别

教学过程:

一、复习圆柱与圆锥的特征

1、圆柱的特征

(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?

(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)

2、圆锥的特征

(1)圆锥有哪几个部分?有什么特点?

(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)

(2)做第29页第1题

二、圆柱的表面积

1、出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答

圆柱的侧面是指哪一部分?它是什么形状的?

(长方形或正方形)

圆柱的侧面积怎样计算?

(底面的周长高)

为什么要这样计算?

(因为:底面的周长=长方形的长,高=长方形的宽)

2、表面积是由哪几部分组成的?

(圆柱的侧面积+两个底面的面积)

3、第29页第2题中求圆柱表面积的部分。

三、圆柱和圆锥的体积

1、圆柱的体积怎样计算?

(底面积高)计算公式是怎样推导出来的?

(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)

2、圆锥的体积怎样计算?

(用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

圆柱圆锥经验总结 第7篇

(1)一个圆柱形蓄水池,直径10米,深2米。这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?

(2)做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?

(3)压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是米。如果每分转动5周,每分可以压多大的路面?

(4)大厅里有10根圆柱,圆柱底面直径1米,高8米。在这些圆柱的表面涂油漆,平均每平方米用油漆千克,共需油漆多少千克?

(5)一个圆柱的侧面积是平方厘米,底面半径是2厘米,它的表面积是多少?

(6)把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?

(7)将高都是1米,底面半径分别为米、1米和米的三个圆柱组成一个物体.这个物体的表面积是多少平方米?

(8)一个蓄水池是圆柱形的,底面面积为平方分米,高分米,这个水池最多能容多少升水?

(9)一个圆柱体的高是厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)

(10)一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?

(11)一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少

(12) (55)一个底面积是平方米的圆柱形蓄水池,容积是314立方米。如果再深挖米,水池容积是多少立方米?

(13) 把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?

(15)砌一个圆柱形水池,底面周长是米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?

(16)一堆圆锥形黄沙,底面周长是米,高米,每立方米的黄沙重吨,这堆沙重多少吨?

(17)一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)

(18)大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是米,如果每千克油漆可漆平方米,漆这些木柱需油漆多少千克?

(19)一个圆锥形沙堆,底面周长是米,高6米,将这些沙铺在宽10米的道路上铺厘米厚,可以铺多少米长?

(20)一个圆柱体和一个圆锥体等底等高,它们的体积相差立方厘米。如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?

(21)一个圆柱的侧面积是平方分米,底面半径3分米,它的高是多少分米?

(22)一节铁皮烟囱长米,直径是米,做这样的烟囱500节,至少要用铁皮多少平方米?

(23)一个没有盖的圆柱形铁皮桶,底面周长是分米,高是12分米,做这个水桶大约需要多少平方分米的铁皮?(用进一法保留整十数)

(24)一个圆柱的底面半径是2分米,高是分米,它的体积是多少?

(25)一个圆柱的底面周长是厘米,高是3分米,它的体积是多少立方厘米?

(26)一个圆柱的体积是3140立方厘米,底面半径是10厘米,它的高是多少厘米?

(27)两个底面积相等的圆柱,一个圆柱的高是7分米,体积是54立方分米,另一个圆柱的高5分米,另一个圆柱的体积是多少立方分米?

(28)一个圆柱形粮囤,从里面量底面半径是4米,高是2米,每立方米粮食约重500千克,这个粮囤大约能盛多少千克粮食?

(29)一个圆柱形水箱,从里面量底面周长是米,高3米,它最多能装多少立方米水?

(30)一个圆柱形蓄水池的底面半径是10米,内有水的高度是米,距离池口50厘米,这个蓄水池的容积是多少立方米?

(31)一个圆柱形机器,体积是立方厘米,底面半径是2厘米,这个圆柱的高是多少厘米?

(32)一个圆柱形玻璃缸,底面直径20厘米,把一个钢球放入水中,缸内水面上升了2厘米,求这个钢球的体积。

(33)一个底面半径是4厘米,高是9厘米的圆柱体木材,削成一个最大的圆锥,这个圆锥的体积是多少立方厘米?削去部分的体积是多少?

(34)一个圆锥形沙堆,底面积是16平方米,高是米,如果每立方米沙重吨,这堆沙重多少吨?

(35)15、一个圆锥形沙堆,底面周长是米,高是米,用这堆沙在10米宽的公路上铺2厘米厚,能铺多少米长?

(36)一个圆柱形油桶,从里面量的'底面半径是20厘米,高是3分米。这个油桶的容积是多少?

(37)一个圆柱,侧面展开后是一个边长分米的正方形。这个圆柱的底面直径是多少分米?

(38)一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的后,还剩12升汽油。如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?

(39)一只圆柱形玻璃杯,内底面直径是8厘米,内装药水的深度是16厘米,恰好占整杯容量的。这只玻璃杯最多能盛药水多少毫升?

(40)有两个底面半径相等的圆柱,高的比是2:5。第二个圆柱的体积是175立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?

(41)一个圆柱和一个圆锥等底等高,体积相差立方分米。圆柱和圆锥的体积各是多少?

(42)东风化工厂有一个圆柱形油罐,从里面量的底面半径是4米,高是20米。油罐内已注入占容积的石油。如果每立方分米石油重700千克,这些石油重多少千克?

(43)一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)

(44)一个圆锥形沙堆,高是米,底面半径是5米,每立方米沙重吨。这堆沙约重多少吨?(得数保留整数)

(45)一个圆锥与一个圆柱的底面积相等。已知圆锥与圆柱的体积的比是 1:6,圆锥的高是厘米,圆柱的高是多少厘米?

(46)把一个体积是立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高?

(47)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3里米的圆锥形铁块,全部浸没在水中,这是水面上升厘米。圆锥形铁块的高是多少厘米?

(48)把一个底面半径是6厘米,高是10厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器内水面的高度?

(49)做一种没有盖的圆柱形铁皮水桶,每个高3分米,底面直径2分米,做50个这样的水桶需多少平方米铁皮?

(50)学校走廊上有10根圆柱形柱子,每根柱子底面半径是4分米,高是分米,要油漆这些柱子,每平方米用油漆千克,共需要油漆多少千克?

(51)一个底面周长是厘米,高为8厘米的圆柱,沿着高切成两个同样大小的圆柱体,表面积增加了多少?

(52)一个圆柱体木块,底面直径和高都是10厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?

(53)用铁皮制成一个高是5分米,底面周长是分米的圆柱形水桶(没有盖),至少需要多少平方分米铁皮?若水桶里盛满水,共有多少升水?

(54)一根圆柱形钢材,截下1米。量的它的横截面的直径是20厘米,截下的体积占这根钢材的,这根钢材原来的体积是多少立方分米?

圆柱圆锥经验总结 第8篇

教学目标

1.联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。

2.通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。

教学重、难点

理解并掌握圆柱、圆锥的基本特征。

教学过程

一、情境导入

1.教师拿一根一头拴着一个小球的绳子甩动,问:你们看到了什么? 再让学生结合书第2页2、3题,想一想你发现了什么?

最后总结出点的移动可以得到线,线的移动可以得到面,面的.旋转可以得到体的结论。

2.教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)

游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。

师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。

引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥

二、 探究圆柱和圆锥的特征

1.从生活的实景图中发现圆柱和圆锥。

从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。

2.小组合作学习,探究圆柱、圆锥的特征。

用各种方法,如摸、量、画等,观察带来的圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。

小组合作学习表格:

研究对象

你们猜想它有哪些特征?

你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。

3.小组汇报反馈。

教师抓住几个关键点进行引导:

圆柱的特征:

⑴两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。

⑵认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。

圆锥的特征:

⑴由一个底面(圆)、一个侧面(曲面)组成。

⑵从圆锥的顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。

小结:通过刚才的合作学习和交流,我们更进一步认识了圆柱和圆锥的特征。你能说一说你现在知道了圆柱和圆锥有哪些特征吗?

4.说一说

课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。

说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。

圆柱圆锥经验总结 第9篇

教学内容:

P29页第1——3题,完成练习五。

教学目标:

1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

教学重点:

圆柱、圆锥表面积、体积的计算

教学难点:

圆柱、圆锥的特征和它们的体积之间的联系与区别

教学过程:

一、复习圆柱与圆锥的特征

1、圆柱的特征

(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?

(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)

2、圆锥的特征

(1)圆锥有哪几个部分?有什么特点?

(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的'顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)

(2)做第29页第1题

二、圆柱的表面积

1、出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答

圆柱的侧面是指哪一部分?它是什么形状的?

(长方形或正方形)

圆柱的侧面积怎样计算?

(底面的周长高)

为什么要这样计算?

(因为:底面的周长=长方形的长,高=长方形的宽)

2、表面积是由哪几部分组成的?

(圆柱的侧面积+两个底面的面积)

3、第29页第2题中求圆柱表面积的部分。

三、圆柱和圆锥的体积

1、圆柱的体积怎样计算?

(底面积高)计算公式是怎样推导出来的?

(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)

2、圆锥的体积怎样计算?

(用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

圆柱圆锥经验总结 第10篇

六年级下册圆锥圆柱数学知识点

1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。

2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。

圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。

圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

圆柱体积比等底等高圆锥体积多2倍。

圆锥体积比等底等高圆柱体积少。

(1)等底等高:V锥:V柱=1:3

(2)等底等体积:h锥:h柱=3:1

(3)等高等体积:S锥:S柱=3:1

题型总结:

高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。

半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍

削成最大体积的问题:

正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长

长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽>高)圆柱圆锥高等于长方体高

浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。

等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。

练习题

1一个圆柱和一个圆锥等底等高,圆柱的体积是48立方厘米,那么圆锥的体。积是( ),如果圆锥的体积是36立方厘米,圆柱的体积是( )。

2.把一个圆柱削成一个最大的圆锥,这个圆柱的体积是立方分米,削成的圆锥的体积是( )立方分米,削去的体积是( )。

3. 把一个圆柱削成一个最大的圆锥,这个圆锥的体积是立方分米,削去的体积是( )立方分米,原来圆柱的体积是( )。

4.一个圆柱的底面半径是3㎝,高是2㎝,与它等底等高的圆锥体的体积是( )。

5.一个圆柱与一个圆锥等底等高,圆锥的体积是立方厘米,该圆柱的体积比圆锥的体积多( )立方厘米。

6.等底等高的圆柱和圆锥,已知它们的体积之差是24立方分米,则圆柱的体积是( )立方分米,圆锥的体积是( )。

数学最大的数和最小的数

最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

没有最小的数字,但有最小的自然数,就是“0”。

小学数学条形统计图知识点

(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。

(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。

(3)取一个单位长度表示数量的多少要根据具体情况而确定

(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

(5)制作条形统计图的一般步骤:

a) 根据图纸的大小,画出两条互相垂直的射线。

b) 在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

d) 按照数据的大小画出长短不同的直条,并注明数量。

圆柱圆锥经验总结 第11篇

六年级圆柱圆锥测试题

一.填空题。(每题2分,共26分)

1.把圆柱的侧面展开可以得到一个长方形,这个长方形的长等于圆柱的( ),宽等于圆柱的( )。

2.一个圆柱的底面半径是3分米,高是5分米,它的底面积是( ),表面积是( ),体积是( )。

3.一个圆柱和圆锥等底等高,圆柱的体积是立方分米,圆锥的体积是( )立方分米。

4.一个圆柱和一个圆锥的体积都是立方分米,底面积都是6平方分米,那么圆柱的高是( )分米,圆锥的高是( )分米。

5.把一个边长是4厘米的正方体削成一个最大的圆锥体,这个圆锥的底面半径是( )厘米,高是( )厘米。

6.一个圆锥的体积是立方米,与它等底等高的圆柱的体积是( )。

7.把一个底面周长是厘米的圆柱侧面展开,得到一个正方形,这个圆柱的高是( )厘米。

8.一个圆锥的体积是立方米,底面半径是2米,它的高是( )米。

9.2平方分米5平方厘米 = ( )平方分米 ; 升 = ( )毫升

10.一个底面直径是0厘米、高是20厘米的圆柱体,如果把它沿直直径垂直于底面切成两半,表面积增加了( )平方厘米。

11.一个圆柱的侧面积是942平方分米,高是6分米,它的底面积是( )。

12.把一个圆柱的底面半径扩大2倍,高不变,底面周长扩大( )。

13.一个圆柱的高是5分米,侧面积是平方分米,体积是( )。

二.判断(每题1分,6分)

1.圆柱的侧面展开图不可能是平行四边形。 ( )

2.圆锥的体积是圆柱体积的 。 ( )

3.把正方形木块削成一个最大的圆柱,则此圆柱的直径与高相等。 ( )

4.一个圆柱体的高扩大2倍,底面积缩小2倍,它的体积不变。 ( )

5.两个圆柱的侧面积相等,它们的体积也一定相等。 ( ) 6.圆柱的高有无数条,圆锥的高只有一条。 ( ) 三.选择。(每题2分,共16分)

1.将一个圆柱体铝块熔铸成圆锥体,它的( )不变。

A.体积 B. 表面积 C.底面积 D.侧面积

2.一个圆锥的底面半径与高的比是1 :4,它与同底同高的一个圆柱体的体积之比是( )

A.1 :4    B.3 :4    C.1 :3     D.1 :8

3.一个圆柱侧面展开是正方形,这个圆柱底面周长与高的比是( )

A.2π:1 B.1 :1 C.π :1 D.无法确定

4.底面积、体积分别相等的圆柱体和圆锥体,如果圆锥的高是15厘米,那么圆柱的高是( )。

A.5厘米 B.15厘米 C.30厘米 D.45厘米

5.“压路机的滚轮转动一周能压多少路面”指( )

A.滚轮的两个圆面积 B.滚轮的侧面积 C.滚轮的.表面积

6.一个长方形的长是6厘米,宽是2厘米。以它的长为轴旋转一周所得到的圆柱体的体积是( )。

A.立方厘米 B.立方厘米 C.立方厘米 D.立方厘米

7.将一个圆柱体的底面半径扩大2倍,高不变,那么体积( )。

A.扩大2倍 B. 扩大4倍 C. 扩大8倍

应用题。(每题5分,共40分)

1.做5节相同的圆柱形通风管,通风管的底面直径是80厘米,长米。做这些通风管至少需要多少平方米铁皮?(用进一法取近似值,得数保留整数)

2.把一个底面半径是4厘米,高是9厘米的铁制圆锥放入盛满水的桶里,将有多少立方厘米的水溢出?

3.把一根长米,底面直径是2分米的圆柱形钢材平均分成3段,表面积增加了多少平方分米?

4.一个圆锥形沙堆,底面半径是1米,高是米。如果每立方米沙重吨,这堆沙约中多少吨?(保留一位小数。)

5.一个圆锥形稻谷堆,底面周长是米,高是米。如果每立方米稻谷重吨,这堆稻谷重多少吨?(得数保留整数)

6.把一块长6厘米,宽4厘米,高5厘米的铁块熔铸成一个高15厘米的圆锥,这个圆锥的底面积是多少平方厘米?

7.一个长方体,底面是一个正方形,底边长是4分米,高是8分米,完全浸入到一个盛满水的圆柱形容器里,容器的底面积为32平方分米。水面会升高多少厘米?

8.某饮料公司计划生产体积是200毫升的饮料罐,尺寸如图(单位:厘米)。你认为哪种形状的饮料罐比较省料,为什么?(计算过程中得数保留两位小数)

圆柱圆锥经验总结 第12篇

圆柱圆锥应用题

圆柱圆锥应用题

1、以右边长方形的宽为轴,旋转可得到一个圆柱,圆柱的底面直径是(   )cm,高是(   ) cm。

2、把一个底面半径 3 cm,高 10 cm的圆柱的侧面沿着它的一条高剪开后展开,可得到一个长方形,长方形长(   )cm,宽(   )cm。

3、用一张长 24  ㎝,宽 10 ㎝的长方形纸,粘住宽做成圆柱的侧面,得到圆柱的底面周长是(   )㎝。高是(   )㎝。

4、一台压路机的前轮是圆柱形,轮宽 4 m,直径 1 米,前轮转动一周压路机前行多少m,压过路面的面积是多少㎡?

5、一个圆柱形茶叶罐,底面直径 8 ㎝,高 20 ㎝,这个茶叶罐的侧面积是多少平方厘米?体积是多少立方厘米?

6、一个圆柱形水桶,从里面量,底面直径 6 dm,高  10 dm,里面水深 5 dm,水的体积是多少升?水桶的容积是多少升?

7、两个高相等的圆柱,一个底面积是 ㎡,体积为50立方分米,另一个的底面积是㎡,它的体积是多少立方分米?

8、一个圆锥形沙堆,底面半径15米,高6米,这个沙堆的体积是多少立方米?

9、把一块棱长9分米的正方体木块削成一个最大圆锥,圆锥的体积是多少立方分米?削掉废料的体积是多少立方分米?

10、一个圆锥形零件的体积是64立方厘米,底面面积是40平方厘米,这个圆锥高多少厘米?

11、一个圆柱的体积是120立方分米,与他等底等高的`圆锥的体积是多少立方分米?

一个圆锥的体积是120立方分米,与他等底等高的圆柱的体积是多少立方分米?

12、用一张面积为628平方厘米的长方形纸,刚好围城一个高20厘米的圆柱的侧面,要给这个侧面配上一个面积为多少平方厘米的底面才能做成一个圆柱形桶?

13、把600毫升水倒入一个底面积是75平方厘米,高20厘米的圆柱形水杯中,水面高多少厘米?

14、把一根长3米的圆柱形木棒切成三个相同的圆柱,表面积增加了240平方厘米,原来这根木棒的体积是多少立方厘米?

15、一个圆柱和一个圆锥等底等高,圆柱的体积比圆锥的体积大240立方厘米,圆柱的体积是多少立方厘米?

16、一个圆柱和一个圆锥体积相等,底面积也相等,圆柱高12厘米,圆锥高多少厘米?

17、一个圆柱的侧面积是平方厘米,高4厘米,这个圆柱的底面积是多少平方厘米?

18、把一个底面半径28厘米,高,24厘米的圆锥形铁块熔铸成一个和他底面积相等的圆柱,圆柱高多少厘米?

19、一种圆柱形通风管,底面周长是35厘米,长10厘米,做40节这样的通风管需要铁皮多少平方米?(都数保留整数)

20、有一座圆锥形帐篷底面直径8米,高米,它的体积是多少立方米?

21、一个圆柱形水池,要在这个水池的内壁和底面贴上瓷砖,水池底面直径8米,深,3米,贴瓷砖的面积是多少平方米?

22、一个圆柱形容器的底面直径是10厘米,里面水深6厘米,把一块铁块放入水中(铁块被水完全浸没)水面上升4厘米,这块铁块的体积是多少立方厘米?

23、一个圆锥形稻谷堆,高3米,底面周长为米,每立方稻谷重600千克,稻谷的出米率是70%,这堆稻谷可磨出大米多少千克?

24、一个圆锥形水桶,从里面量底面直径6分米,高10分米,在里面倒入250升水,再把一个底面积为,25平方分米,高6分米的圆锥形铁块放入水中,水可桶的水会溢出多少升?

25、一个内直径10厘米的瓶子里,水的高度是8厘米,把瓶盖拧紧后倒置放瓶水,无水部分是圆柱形,高是10厘米,这个瓶子的容积是多少毫升?

圆柱圆锥经验总结 第13篇

教学内容:教材第18-20页圆柱和圆锥、练一练以及练习五的全部习题。

教学目标:

1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。

2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。

3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。

教具学具:

1、 教师准备大小不同的圆柱和圆锥实物及模型。

2、 学生准备圆柱和圆锥实物以及自制的圆柱和圆锥。

3、 长方形、直角三角形和半圆形的小旗。

教学过程:

一、创设情境 导入新课

出示一组图形(长方体、正方体、圆柱、圆锥)。

提问学生:你能说出这些图形的名称吗?

师说明:这些形体有些是我们已认识的长方体、正方体,还有就是我们今天要学习的新的立体图形:圆柱和圆锥体。 (板书课题)

二、教学新课

㈠认识圆柱的特征。

1、出示例1请同学们仔细观察上面哪些是圆柱形的?

2、你还能举出其他例子吗?

3、请你拿出自己准备好的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。

4、集体交流:

⑴上下两个面是面积相等的圆,叫做圆柱的底面。

⑵有一个曲面叫做圆柱的侧面。

⑶上下两个底面之间的距离叫做圆柱的高。

教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。

5、让学生动手量圆柱的高。

讨论:⑴怎样量更准确?

⑵如果我们换个地方量,它的高会变成多少?这说明什么?(圆柱的高有无数条)

6、师小结圆柱的特征。

㈡认识圆锥的特征

1、出示圆锥的实物,这些物体的形状是圆锥形的,简称圆锥。我们教材所讲的圆锥都是直圆锥。

2、在日常生活中,你还见过哪些圆锥形的物体?

3、利用学生课前做好的圆锥,让学生摸一摸、看一看、比一比,你有什么发现?将自己的`发现与同桌交流。

4、集体交流:

⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。

⑵从圆锥的顶点到底面圆心的距离是圆锥的高。

5、测量圆锥的高。

⑴引导学生讨论:圆锥有几条高?

⑵用直尺和三角板如何测量圆柱的高。(学生自己操作)

㈢比较圆柱和圆锥

生拿出课前准备好的圆柱和圆锥学具,指出它们的底面和侧面。(练习五第1题)

三、巩固练习

1、完成练一练。

2、练习五第2题。从正面、上面和侧面看圆柱和圆锥,看到的是什么形状?充分让学生自己观察。

3、开放练习,拓展延伸。

⑴将课前做的长方形、直角三角形和半圆形的小旗快速旋转一周,观察并想象一下各能成什么形状?

⑵师演示。

⑶自己设计小旗的形状,旋转小棒观察并想象一下所形成的形状,在小组内交流。

四、课堂小结

今天这节课你学到了哪些知识?圆锥体和圆柱体有哪些特征?

《圆柱和圆锥的认识》的教学反思

本课教学层次清楚,注重学生学法指导,注重联系生活实际,由实物抽象出几何形体,圆柱和圆锥,接着让学生举生活实例,你在周围见过哪些这样的物体?然后由学生自主交流,观察自带的圆柱和圆锥,引导学生发现特征,你发现了什么?由学生自己概括出特征.特别是教学圆柱的高有无数条,圆锥的高只有一条,这两个知识点时,由学生通过测量它们的高,并经过对比,得出结论.让学生亲生经历了知识的形成过程.

但本节课也存在许多不足,

(1)课前检查没有做,如果在课前花1分钟时间,让学生展示自己准备的立体图形,让学生体验成功的快乐,并把这种情绪带到新课的学习中,本节课的效果会更好。

(2)作业设计不科学,偏重操作,思维密度不强,容易让学生产生思维疲劳。

圆柱圆锥经验总结 第14篇

一、教学内容

学生已经掌握了长方体和正方体的特征、表面积与体积的计算方法,还直观认识了圆柱。在这些知识的基础上,本单元教学圆柱和圆锥,主要内容有:圆柱和圆锥的特征,圆柱的侧面积与表面积,圆柱和圆锥的体积计算。

全单元编排了5道例题、四个练习以及整理与练习,大致分成五段教学。

例1、练习五,圆柱和圆锥的形状特征;

例2、例3、练习六,圆柱的侧面积和表面积;

例4、练习七,圆柱的体积;

例5、练习八,圆锥的体积;

整理与练习综合应用全单元的知识,实践活动扩展知识、开拓视眼。

二、教材编写特点和教学建议

1.按整体-部分-整体的线索,分别教学圆柱和圆锥的结构特点。

学生认识几何体一般先整体感知形状,再仔细研究结构与特征,在此基础上归纳描述,建立形体概念。

例1先教学圆柱的特征,再教学圆锥的特征。这是因为学生对圆柱已有直观感受,对圆锥比较陌生。圆柱和圆锥的形状虽然有明显的区别,但它们都有圆形底面、弯曲的侧面。先认识圆柱,有利于认识圆锥。

在现实的情境中初步认识圆柱和圆锥。例题在图画里呈现许多圆柱、圆锥形状的物体,让学生从中找出圆柱形状物体,告诉他们有些物体的形状是圆锥,还要回忆生活中的其他例子,体会这两种形状的物体是比较常见的,为认识圆柱和圆锥的特征搜集了丰富的材料。

观察交流,分别描述圆柱和圆锥的结构特点。教材要求学生仔细观察圆柱和圆锥,发现它们的特征。圆柱的特征突出三点:从上到下始终一样粗;两个底面是相同的圆形;侧面是一个曲面。圆锥的特征也突出三点;有一个顶点;一个底面是圆形;侧面是一个曲面。在学生交流的基础上,出现圆柱和圆锥的几何图形,图文结合指出圆柱和圆锥的底面侧面和高。这些都是与形状特征有关的概念,还是继续教学侧面积、表面积、体积必需的基础知识。

圆柱与圆锥的高都是特定的概念,圆柱的高是它两个底面之间的距离,圆锥的高是它顶点到底面圆心的距离。教材在圆柱和圆锥的几何图形里用虚线画出了圆柱两个底面圆心间的线段,圆锥顶点到底面圆心的线段,还在图形外面标注高,让学生理解圆柱和圆锥的高分别是这两条线段的长,还暗示了测量圆柱、圆锥的高的方法。

通过识别加强形体概念。第19页练一练找出圆柱形或圆锥形的物体,进一步突出圆柱和圆锥的特征,加强形体概念。有些物体的底面是多边形,不是圆形;有些物体的两个底面都是圆形,但大小不同;有些物体的两个底面虽然是相同的圆,但两底之间不一样粗,它们都不是圆柱形的物体。

在练习里发展空间观念。练习五第1题巩固有关圆柱、圆锥特征的基础知识。第2题指出圆柱、圆锥的三视图,体会从正面、侧面看到的形状要用平面图形来表示。第3、4题体会形旋转成体,形的尺寸决定体的底面大小和高的长短。第5题利用教科书提供的材料制作圆柱、圆锥,体会侧面是平面图形卷成的曲面,学会测量底面直径和高的方法,计算底面周长和面积,复习圆的知识。学生的空间观念在观察、操作、制作的过程中得到发展。

2.展开圆柱的侧面、表面、研究侧面积和表面积的计算方法。

例2教学圆柱的侧面积,例3教学圆柱的表面积。这样安排,符合知识间的关系,突出侧面积是认知的重点。

指导展开圆柱侧面的方法,理解侧面展开后的形状。例2计算圆柱形罐头侧面的商标纸的面积,在问题情境里,学生知道商标纸是围到圆柱侧面上的,于是产生把商标纸展开的愿望。教材指导沿着接缝剪开,接缝的长是圆柱的高,沿着接缝剪就是沿着高剪,展开是一张长方形纸。学生在围-剪-展-围的活动中,体会了圆柱侧面展开是一个长方形。

指点方向,探索侧面积的算法。计算长方形面积的方法是长宽,怎样利用圆柱的底面直径和高计算侧面积?需要解决的问题是长方形的长和宽与圆柱有什么关系。教材让学生研究这些关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高。这样,圆柱的侧面积就可以通过底面周长高计算。得出侧面积算法是推理的结果,在推理过程中,形象思维和抽象思维都得到锻炼,空间观念得到培养。

画出表面展开图,研究表面积的算法。学生有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。例3教学圆柱的表面积,创造已有知识、经验迁移的氛围,要求学生在方格纸上画出一个圆柱的展开图。为了能顺利地画图,例题的第一个问题是沿高展开侧面,得到的长方形长和宽各是几厘米?指导学生应用圆柱侧面积知识,先画出侧面的展开图。第二个问题是两个底面分别是多大的圆?指导学生根据圆柱立体图形里的底面直径,画出两个底面圆。通过画图,看到圆柱的展开图是一个侧面(长方形)和两个底面(圆形)组成的,由此得出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。在小组里讨论怎样计算圆柱的表面积,一要理出解决问题的思路和步骤,二要根据已知的圆柱的有关条件,说说侧面积与底面积的算法。由于圆柱表面积计算比较复杂,一般分步解答。

灵活应用侧面积、表面积知识,解决实际问题。练习六是圆柱侧面积、表面积的实际应用,解答问题要重视数学化,把实际问题抽象成计算侧面积、底面积或表面积的数学问题。如第1题求铝皮面积是计算圆柱形队鼓的侧面积,计算羊皮面积是求圆柱形队鼓的两个底面积。再如通风管是没有底面的,彩纸糊的灯笼只有下底和侧面。另外,计算圆柱的侧面积和表面积,经常要进行繁琐的乘法运算。为此,本单元提倡学生使用计算器,把精力用于数学化上,用于规划解决问题的步骤上。

3.应用转化策略,教学圆柱的体积计算公式。

把未知转化成已知是解决新颖问题的常用策略,也是创新精神、实践能力的表现。教学圆柱的体积公式,运用了转化策略,分三步进行。

建立等底等高概念,形成等积猜想。例4教学圆柱体积的计算方法,首先出示一个长方体、一个正方体、一个圆锥,图文结合指出它们的底面积相等、高也相等。因为圆柱的体积计算公式是转化成等底、等高的长方体后推导的,学生需要形成等底等高概念。然后从长方体、正方体的体积都可以底面积高计算,得到等底、等高的长方体与正方体的体积相等。由此猜想,圆柱的体积也与等底、等高的长方体相等,形成了研究圆柱体积算法的思路。

割、拼圆柱,转化成长方体。圆柱的体积是否与等底、等高的长方体相等,要看它能不能转化成相应的长方体。学生有圆转化成长方形的经验,以此为基础,把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。这里讲近似,是因为拼成的物体的长是8段弧组成的曲线。由此想像,如果把圆柱的底面平均分成32份、64份......切开后拼成的'物体的长越来越接近线段,拼成的物体越来越接近长方体。在切、拼操作以及想像中,实现了圆柱转化成长方体。

通过推理,得到圆柱体积计算公式。切、拼把圆柱转化成长方体,圆柱的体积公式还要通过推理得到。教材先指导学生研究拼成的长方体与原来的圆柱的关系,看到两个物体的体积相等、底面积相等、高也相等。再体会底面积高既是计算长方体的体积,也算得了圆柱的体积。由此得出圆柱的体积公式,并用字母表示,便于记忆和应用。

4.估计-验证探索圆锥的体积公式。

就小学生现有的知识,把圆锥转化成体积相等的其他物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同

认识等底、等高的圆锥与圆柱,估计圆锥体积是圆柱的几分之几。例5图示了一个圆柱和一个圆锥,指出它们的底面积相等,高也相等。从图画直观,学生能确定圆锥的体积比圆柱小,教材让学生估计这个圆锥的体积是圆柱的几分之几。这里的估计不要求准确,也不要求全体学生有相同的答案,说成、或其他分数都允许。估计要经过验证才能确认或修正,估计-验证是解决问题的一种策略。

通过实验,发现等底等高的圆柱与圆锥的体积关系。首先准备器材,找等底等高的圆柱、圆锥容器各一个,教材图示了比较底面积和比较高的方法。然后在圆锥容器里装满沙子,倒入空的圆柱容器里,看看几次正好倒满。从倒沙子实验得出圆锥体积是等底等高圆柱体积的,确认或者修正原来的估计。

利用圆柱体积算圆锥体积,推导圆锥的体积公式。上面实验的结论可以用数学式子表示:圆锥的体积=等底等高圆柱的体积。圆柱的体积通过底面积高计算,所以圆锥的体积=底面积高。

编排等底等高圆柱与圆锥的体积关系的专项练习。掌握圆锥体积计算方法的关键在理解和应用等底等高圆锥、圆柱的体积关系,即圆柱的体积是等底等高圆锥的3倍,圆锥的体积是等底等高圆柱的。练习八里有这方面的专项训练,如第2题、第4题、第5题等。第2题在圆锥容器里注满水倒入等底等高的空圆柱容器,水只占圆柱容器空间的。因此,水面的高只是圆柱高的。第5题里的圆锥只与底面直径9厘米、高4厘米的圆柱的体积相等。圆锥与底面直径3厘米、高9厘米的圆柱的体积不相等,因为圆锥的底面积不是圆柱底面积的3倍。

5.测量形状不规则的物体的体积。

生活中有大量形状不规则的物体,它们的体积如何测量?实践活动《测量物体的体积》解决这个问题。

转化成圆柱算体积。把土豆放入存水的圆柱容器,能测量体积。教材安排小组合作学习,先测量圆柱容器的底面积,以及放入土豆前的水面高度;再把土豆放进去,测量放土豆后的水面高度。学生能够从水面上升,体会那段圆柱的体积就是土豆的体积。进行这项活动要注意两点,一是在圆柱容器的里面测量它的底面直径和水面高度,并算出底面积。二是帮助学生理解水面高度变化与土豆体积的关系。

利用质量与体积的比值算体积。同一种材料,物体的质量与体积的比值(即比重)是一定的,物体的质量除以比重的商是物体的体积。如铁的比重是每立方厘米克,一块质量为780克的铁块的体积是=100(立方厘米)。这次实践活动的第二个内容就是应用这种关系算体积,分三步进行。第一步用测量土豆体积的方法分别测量两块铁块的体积,用天平称出这两块铁块的质量。第二步把两块铁块的体积和质量填入教材设计的表格,分别算出质量与体积的比值,发现比值是相同的。第三步用天平称出另一块铁块的质量,通过质量除以比重求出体积。开展这项活动也要注意两点,一是先测量的两块铁块的体积要尽量准确,否则,得不到质量与体积的比值一定。二是帮助学生理解质量除以比重的商是体积。

圆柱圆锥经验总结 第15篇

教学内容:

教材第9~10页的例1和第10页的练一练,完成练习二第1~3题。

教学目标:

1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.

2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

3、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教学重点:

掌握圆柱、圆锥的特征。

教学难点:

掌握圆柱、圆锥的.特征及空间观念的形成。

教学资源:

课件、学生每人准备一个圆柱或一个圆锥形实物。

教学过程:

一、创设情境,初步感知。

1、课件出示:圆柱、圆锥、正方体、长方体等立体图形的示意图

2、教师:这么多物品,你知道它们各是什么形状吗?

指名学生分别说。

谈话:回忆一下学过的图形各有什么特征?学生回答。

谈话:不论长方体还是正方体,它们都是由一些平面图形围成的立体图形,你知道图(4)是什么形状吗?学生回答,教师板书:圆柱

图(5)是什么形状?板书:圆锥

你能说一说日常生活中你见过那些圆柱和圆锥?(指名学生说,如铅笔、烟囱、套管、铅锤等)

这节课就让我们一起进一步认识圆柱、圆锥。

二、合作探究,认识特征

(一)认识圆柱的特征

1、激发兴趣、提出问题

谈话:对于圆柱和圆锥,你想知道有关它们的哪些问题?

学生回答,教师把有关圆柱、圆锥的问题写在黑板上。

谈话:同学们真聪明,提了这么多有价值的问题,今天这节课我们先来研究一下圆柱、圆锥的特点,其它问题我们以后再来研究,好吗?

2、认识圆柱的底面和侧面

教师出示圆柱实物并将直尺靠在圆柱实物边上,告诉学生上下粗细相同的圆柱叫直圆柱。

谈话:请同学们拿出自己准备的圆柱实物,仔细看一看。

①先看一看,你认为它有几个面?

②再摸一摸每个面有什么特征?

③然后小组内互相说一说自己手中的实物和同学的实物有什么特点?

圆柱圆锥经验总结 第16篇

知识要点:

圆柱:

(1) 特征:是由两个底面和一个侧面三部分组成的。底面是两个完全相同的圆,

侧面是一个曲面。

(2) 圆柱的侧面及其与底面之间的关系:沿高剪开的展开图是一个长方形(或正方形),

这个长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。

(3) 圆柱的高:圆柱两个底面之间的距离叫做高,有无数条高。

(4) 侧面积:圆柱的侧面积 = 底面周长×高,用字母表示为S侧?Ch

(5) 表面积:圆柱的表面积 = 侧面积+底面积×2

(6) 体积:圆柱的体积 = 底面积 × 高 ,用字母表示为V?Sh

圆锥:

(1) 特征:由一个底面和一个侧面两部分组成,它的底面是一个圆,侧面是一

个曲面。

(2) 圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。

圆锥的体积等于和它等底等高的圆柱体积的??

(3) 体积:?

11?公式:V?V?Sh圆锥圆柱?33?

解题大智慧

一、用圆柱的特征解题 1、填空

(1)把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的( ),圆柱的高就是它的( )

(2)当圆柱的( )和( )相等时,它的侧面展开图是一个正方形。

(3)把一个底面半径是2 cm 的圆柱的侧面展开,得到一个正方形,这个圆柱的高是( )cm。

2、把一个圆柱的侧面展开后得到一个正方形,那么这个圆柱的高与底面直径的比是多少?

3、一个底面周长是,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?

二、用圆柱的侧面积和表面积解题

1、一个圆柱,底面周长是,高是10dm,求它的侧面积?如果不是已知底面周长,而是已知底面半径或直径呢?

2、一个圆柱的底面周长是,高是25cm,求它的表面积。

3、一顶圆柱形厨师帽,高28cm,冒顶直径20cm,做这样10顶帽子需要多少面料?

4、用铁皮制作1节通风管,它的长是60cm,底面圆的直径是10cm。至少需要铁皮多少平方厘米?

5、做一对无盖的圆柱形铁皮水桶,高是40cm,底面直径是30cm,至少需要铁皮多少平方厘米?

6、把一张长16cm,宽的长方形围成一个圆柱形纸筒,这个圆柱形纸筒的侧面积是多少平方厘米?

7、挖一个圆柱形的蓄水池,已知它的底面直径是3m,池深。在水池的底面和内壁抹上水泥,每平方米用水泥,共需水泥多少千克?

8、把一个大圆柱切成了3个同样大小的小圆柱,3个小圆柱的表面积之和比大圆柱的表面积多平方米。求大圆柱的底面积是多少?

9、一根圆柱形木料,底面直径2dm,高10dm,如果沿底面直径纵切成相等的两块,其中一块的表面积是多少平方分米?

10、右图是一根钢管,求它的表面积。(单位:cm)

11、把底面直径为40cm,高为100 cm的圆柱形木材,按底面“+”字形切成相等的四部分,每部分的表面积是多少?

三.用圆柱的体积解题

1、一根圆柱形钢材,底面积是40cm2,高是,它的体积是多少?

2、一个圆柱的底面周长是,高是;求圆柱的体积?

3、把一个圆柱的侧面展开后得到一个正方形。已知圆柱的高是 dm,求圆柱的体积。

4、一个圆柱形铁皮油桶中装满了汽油。如果将汽油倒出的高是8dm,它的占地面积是多少平方分米?

5、把3个长6cm,底面积相等的圆柱拼成一个大圆柱,表面积减少了,拼成的大圆柱的体积是多少?

310

后还剩下56L。油桶

6、有一种饮料的瓶身呈圆柱形(不包括瓶颈),容积是480ml,现在瓶中装有一些饮料。瓶子正放时饮料高度为20cm,倒放时空余部分的高度为4cm。瓶内现有饮料多少毫升?

7、有两种圆柱形罐头盒:一种罐头盒细长,另一种罐头盒短粗。已知细长罐头盒的高是短粗罐头盒的2倍,短粗罐头盒的半径是细长罐头盒半径的2倍。哪种罐头盒的`容积大,大多少?

8、一个皮球掉进盛有水的圆柱形玻璃缸内,玻璃缸的底面直径是20cm,皮球有

的体积浸入水中。若把皮球从水中取出,缸内水面下降2 cm,求皮球的体

9、把一个正方体木块削成一个最大的圆柱,这个圆柱的体积是,求正方体木块的体积。

10、把一根长40 cm的圆柱形钢筋截去4cm,其表面积减少。求原钢筋的体积。

四、用圆锥的特征和与圆柱的关系解题

1、一个圆柱的底面半径是3 cm,高是2 cm,与它等底等高的圆锥的体积是( )cm3。

2、把一个体积是120 cm3的圆柱体形木材削成一个最大的圆锥,则削去部分的体积是( )cm3。

3、一个圆锥的高不变,如果它的底面半径扩大到原来的2倍,那么它的体积就扩大到原来的( )倍。

4、圆锥有( )条高,圆柱有( )条高。 5、一个圆锥的高不变,底面积扩大到原来的3倍,则它的体积( )

6、以一个直角三角形的一条直角边为轴旋转一周,就可以得到( 圆柱与圆锥)

五、用圆锥的体积解题

1、一个圆锥底面直径是4dm,高是6dm,求它的体积。

2、一个圆锥底面半径是3cm,高是2dm,求它的体积。

3、一个圆锥底面周长是,高是,求它的体积。

4、有一个圆柱形沙滩,底面直径6m,高,如果用一辆每次能装的小型货车运送,要运几次?

5、一个圆柱形塑料教具和一个圆锥形塑料教具等底等高,它们的体积总和是840cm3,圆柱形教具的体积是多少立方厘米?

6、李伯伯家种的小麦丰收了,他把小麦放在场院里堆成了一个圆锥形,底面周长是,高是。如果每立方米小麦种750kg,这堆小麦重多少千克?

7、一个底面直径是12cm的圆锥形木块,把它分成形状、大小完全相同的两个木块后,表面积比原来增加了120cm2,这个圆锥形木块的体积是多少?

8、有一个底面直径是20cm的圆柱形容器,容器内的水中浸没着一个底面周长是,高是20cm的圆锥形铁块。当取出铁块后,容器中的水面下降了多少厘米?

9、一个正方体的体积是225cm3,一个圆锥的底面半径和高都等于该正方体的棱长,求这个圆锥的体积。

10、有一个圆锥形沙滩,它的底面周长是,高是。用这堆沙子在8m宽的公路上铺3cm厚的路面,能铺多少米?

11、把一个底面周长是24cm,长是18cm的圆柱形钢材加工成与它等底等体积的圆锥形钢材,圆锥的高是多少?

圆柱圆锥经验总结 第17篇

1、圆柱形队鼓的侧面由铝皮围成,上、下底面蒙的是羊皮。队鼓的底面直径是6分米,高是分米。做一个这样的队鼓,至少需要铝皮多少平方分米?羊皮呢?

2、一个圆柱形的油桶,底面直径是米,高是1米。做一个这样的油桶至少需要多少平方米铁皮?(得数保留两位小数)

3.做一根长2米、管口直径米的白铁皮通风管,至少需要白铁皮多少平方米?

4.一个圆柱形的灯笼,底面直径是24厘米,高是30厘米。在灯笼的下底和侧面糊上彩纸,至少要多少平方厘米的彩纸?

5.做一个高6分米、底面半径分米的无盖圆柱形铁皮水桶,大约要用铁皮多少平方分米?(得数保留整十平方分米)

6..“博士帽”是用黑色卡纸做成的,上面是底面直径30厘米的正方形。下面是底面直径16厘米的无底的圆柱。制作20顶这样的“博士帽”,至少需要黑色卡纸多少平方分米?

7.广场上一根花柱的高是米,底面半径是米,花柱的侧面和顶面都布满塑料花。如果每平方米有42朵花,这根花柱上有多少朵花?

8.柱子高3米,底面周长米。给5根这样的柱子刷油漆,每平方米用油漆千克,一共要用油漆多少千克?

9.一个圆柱形保温茶桶,从里面量,底面半径是3分米,高是5分米。如果每立方米水重1千克,这个保温桶能盛150千克水吗?

10.银行的工作人员通常将枚1元的硬币摞在一起,用约卷成圆柱的形状,圆柱的底面直径是厘米,高是厘米。你能算出每一枚元的硬币的体积大约是多少立方厘米吗?(得数保留一位小数)

11.找一个圆柱形茶杯,从里面量出它的高是30厘米,底面直径是8厘米,算出这个茶杯大约可盛水多少克?(1立方厘米重1克)

12.一个圆柱的油桶,从里面量,底面直径是40厘米,高是50厘米。

(1)    它的容积是多少升?

(2)    如果1升柴油重千克,这个油桶可装柴油多少千克?

13.牙膏厂将牙膏口的直径由原来的厘米改为厘米。如果每人每天用牙膏的长度是2厘米左右,一年里,每个人大约要比原来多用去多少立方厘米牙膏?

8一个圆柱形水池,从里面量得底面直径是8米,深米。

(1)    在这个水池的底面和四周抹上水泥,抹水泥部分的面积是多少平方米?

(2)    这个水池最多能蓄水多少吨?(1立方米水重1吨)

15.一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。

(1)    搭建这个大棚枪林弹雨要用多少平方米的塑料薄膜?

(2)    大棚内的空间大约有多大?

16.有两个空的玻璃容器。圆锥的底面直径是10厘米,高是12厘米;圆柱的底面直径是10厘米,高是12厘米,。在圆锥形容器里注满水,再把这水倒入圆柱形容器,圆柱形容器里的水深多少厘米?

17.一个近似于圆锥形状的野营帐篷,它的底面半径是3米,高是米。

(1)    帐篷占在面积是多少?

(2)    帐篷里面的空间有多大?

18.(1)一个圆柱的体积是立方分米,与它等底等高的圆锥的体积是(      )立方分米。

(2)一个圆锥的体积是立方分米,与它等底等高的圆柱的体积是(       )立方分米。

19.张师傅要把一根圆柱形木料,木料的底面直径是2分米,高是3分米,削成一个圆锥。

(1)    削成的圆锥的体积最大是多少立方分米?

(2)    代我还能提出什么数学问题?

20.一个圆锥形沙堆,底面直径是8米,高是米。的体积大约是多少立方米?

21.有一个近似于圆锥形状的碎石堆,底面周长是米,高是米。如果每立方米碎石重吨,这堆碎石大约重多少吨?

22.蒙古包由一个圆柱和一个圆锥组成。圆柱的底面直径是6米,高中2米;圆锥的高是1米。蒙古包所占的空是大约是多少立方米?

23.一种压路机的前轮是圆柱形状的,轮宽米,直径米。前轮滚动一周,压路的面积是多少平方米?

24.一个圆柱和一个圆锥,底面直径都是6厘米,高是12厘米。它们的体积一共是多少立方厘米?

25.一个圆柱形水桶,高6分米。水桶底部的铁箍大约长公米。

(1)    做这个水桶至少用去木板多少平方分米?

(2)    这个水桶能盛120升水吗?

26.有两个不同形状的装饰瓶,里面放满了五彩石。从里面量,圆柱瓶的底面直径是10厘米,高10厘米;长方体瓶的长和宽都是11厘米,高是9厘米。哪个瓶里的五彩石多一些?

27.一种圆柱形的饮料罐,底面直径7厘米,高12厘米。将24罐这样的饮料放入一个长方体的纸箱。

(1)    这个长方体的纸箱的长、宽、高至少各是多少厘米?

(2)    这个纸箱的容积至少是多少?

(3)    做一个这样的纸箱,至少要用硬纸板多少平方厘米?(纸箱盖和箱底的重叠部分按平方厘米计算)

圆柱圆锥经验总结 第18篇

一、说教材。

《圆柱和圆锥》是北师大版六年级下册第一单元,也是小学阶段几何知识的最后一部分新课内容,内容包括:面的旋转、圆柱的表面积、圆柱的体积及圆锥的体积四小节,本节复习课旨在通过回顾梳理,交流互补,使学生将零散的知识在头脑中串成线,联成片,形成完整的知识网络,加深各个图形之间的内在联系,综合运用有关知识解决实际问题。

《课程标准》中对本学段的教学要求是:认识并掌握圆柱体、圆锥体的特征,明白表面积和体积的意义,通过操作、实验、转化、类比、推理等逻辑方法得到表面积和体积的计算方法,掌握常用的体积(容积)单位,会计算一些形体的表面积和体积(容器的容积),并能应用所学知识解决简单的实际问题。

二、根据此要求以及学生的特点,我确定了如下的教学目标:

1、通过复习、交流,我会说出圆柱和圆锥的特征和相关的计算公式。

2、通过练习、展示,我会运用公式正确解决有关圆柱的表面积和体积及圆锥体积的实际问题。

三、教学重点:运用所学知识解决实际问题。

四、教学难点:综合运用所学知识解决问题。

五、说教法学法。

本节课我采取“练习法”,让学生在回顾整理、交流互补、巩固练习、展示自我等一系列活动中掌握知识、发展智力、锻炼能力。

六、说教学过程

“复习课”作为数学课的一种基本类型,它不同于新授课的探索发现,也有别于练习课的巩固应用,它的一个重要功能就是引导学生对所学的知识进行整理,把分散的知识综合成一个整体,使之形成一个较为完整的知识体系,提高学生对知识的掌握水平。承载着“回顾与整理,沟通与生成”的独特功能。本节课我设计了以下几个环节:

第一环节:谈话导入,明确目标。本学期,我们结识了小学阶段几何形体中的最后两位朋友,他们是——(圆柱和圆锥)。我们通过努力,知道了它们的来历,摸清了它们的特征,学会了计算圆柱的表面积、侧面积、体积以及圆锥的体积,体会到了它在我们生活中的作用。今天,让我们来盘点一下自己的收获,重温一下它们相关的知识吧!今天我们就来复习圆柱和圆锥。谈话中,我把圆柱和圆锥比作朋友,拉近了学生和知识的距离,“知道了它们的来历,摸清了它们的特征,学会了计算圆柱的表面积、侧面积、体积以及圆锥的体积,体会到了它在我们生活中的作用”这几句话既简要概括了本单元所学的主要内容,又给学生的复习活动提供了线索。

第二环节:回顾梳理、形成网络。课前交流,(先独立写出圆柱和圆锥的特征及圆柱的侧面积、体积与圆锥的体积公式及其变形公式,再在小组内交流你的成果。)。这个环节当中,我让学生用自己喜欢的方法把《圆柱和圆锥》的'相关知识进行分类整理,然后进行全班汇报。在这一过程中,学生可以相互启发,相互补充,使知识的结构不断完善,同时也培养了学生整理与复习的能力。

第三环节:运用知识、解决问题。自主学习,本环节习题的选择,我经过了精心考虑,题目具有一定的基础性、启发性;交流展示,本环节习题具有综合性、代表性与典型性,有能“牵一发而动全身”的题目,帮助学生从中找出解题规律与方法,也有一题多变的题目开阔学生思路,使学生通过复习有新的收获、新的体会。

第四环节:达标检测,检验学生的复习情况。

第五环节:课堂小结,通过复习,你对哪些知识掌握更牢固了,还有没有疑点没有解决,说一说吧!

七、说教学板书

《圆柱和圆锥》整理与复习

特征:圆柱、圆锥

圆柱表面积、侧面积

体积:圆柱、圆锥

圆柱圆锥经验总结 第19篇

教学目标:

【知识与技能目标】

通过自主整理,能够清晰的了解圆柱、圆锥单元的三大知识系统,即特征、表面积、体积。

【过程与方法目标】

通过复习,对有关计算公式的推导过程进一步明晰,能够熟练的运用计算公式解决实际问题

【情感与态度目标】

在复习中,通过小组合作、精巧的练习设计等,体会到解决问题的乐趣,增强学好数学的信心。

教学重点:

圆柱、圆锥的表面积、体积复习及有关计算。

教学难点:

圆柱、圆锥知识的综合运用。

教学准备:

多媒体。

教学过程:

一、回忆知识,并自主整理

1.揭示课题:复习圆柱和圆锥

师:请同学回忆一下,在圆柱、圆锥单元,我们学习了哪些知识?你能有序的将它们整理吗?。

出示整理要求:

(1)把本单元的知识点,有序的整理在练习纸上。

(2)整理好后,在小组内交流自己的想法以及各知识点的具体内容。

2.指名汇报整理结果,使用展示

(1)学生分别汇报圆柱、圆锥的特征。

(2)圆柱表面积怎样计算?(板书)生活中还有一些实际运用的例子,你能举一些吗?(制作油桶多少铁皮,通风管等[这是生活中的实际运用])怎样求圆柱的侧面积?(板书计算公式)出示自制的长方体通风管,让学生思考如何计算铁皮?

(3)圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算怎样推导来的?

(4)圆锥的体积计算公式,又是怎样推导来的呢?(生口述推导过程)这里的圆柱和圆锥容器有怎样的关系,缺少这样的联系,能够推导出圆锥体积公式吗?

圆柱的特征:

圆柱表面积=1个侧面积+2个底面积

圆柱体积=底面积×高

圆柱侧面积=底面周长×高 V=sh

圆锥的特征 :

圆锥体积=底面积×高×1/3 V=1/3sh

二、巩固知识 分层训练

师:正所谓学以致用,能用整理的这些知识解决问题吗?

(一)填空

1.一个圆柱的侧面展开图是一个正方体,这个圆柱体的底面半径是4厘米,它的高是( )厘米.

2.一个圆柱的体积是120立方厘米,比它等底等高的圆锥的体积大( )立方厘米

3. 一个圆柱的底面半径和高都是5厘米,它一的侧面积是( ),表面积是( )。

4.一个圆柱和一个圆锥等地等高,体积和是60立方厘米,圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米.

5.一个圆柱的高不变,底面半径扩大3倍,它的侧面积比原来扩大( )倍,增加( )培.体积比原来扩大( )倍,增加( )倍.

6.一个圆柱的侧面积展开图是正方形,这个圆柱的底面直径与高的比是( )

以上练习采用学生口答的形式。

(二)判断

1.圆锥的体积等于圆柱体积的1/3.( )

2.圆柱的体积大于圆锥的体积.( )

3.圆柱的底面半径扩大2倍,高缩小2倍,它的侧面积不变.( )

4.圆柱的体积比与它等底等高的'圆锥的体积多2/3.( )

手势判断,并说明错误原因。

(三)选择

1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指( ).

A.底面积 B.侧面积 C.表面积 D.体积

2.甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( ).

A.高一定相等

B.侧面积一定相等

C.侧面积和高都相等

D.侧面积和高都不相等

3.一个圆柱形水池的容积是立方米,池底直径是 4米,水池的深度是( )

4.一个圆锥的体积是a立方米,和它等底等高的圆柱体的体积是( )立方米.

A. a÷3 B. 2a C. 3a D. a⒊

5.把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是( )平方厘米。

D.

学生独立完成,集体订正。

(四)解决问题

1.一个圆柱形的木棒,底面直径4厘米,高10厘米,在地面上滚动一周后前进了多少米?压过的面积是多少平方厘米?

2.一根圆柱形木材长20分米, 分成4个相等的圆柱体. 表面积增加了平方分米,截后每段圆柱体积是多少?

学生独立完成,集体订正。

三、布置作业

1.把一个底面直径为8分米,高3分米的圆柱形钢材,熔成一个直径为12分米的圆锥形,能熔多高?

2.星期六笑笑请6位朋友来家做客,她选用一盒长方体包装的牛奶招待好朋友,给每位好朋友倒上一满杯后,她自己还有牛奶喝吗?

四、总结知识

今天这节课你都有哪些收获?找学生谈一谈。

【板书设计】

圆柱和圆锥的整理和复习

圆柱的特征:

圆柱表面积=1个侧面积+2个底面积

圆柱体积=底面积×高

圆柱侧面积=底面周长×高 V=sh

圆锥的特征:

圆锥体积=底面积×高×1/3 V=1/3sh

圆柱圆锥经验总结 第20篇

圆柱和圆锥数学教案

单元教学要求:

1. 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高,数学教案-圆柱和圆锥。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:圆柱体积计算公式的推导和应用。

单元教学难点:灵活运用知识,解决实际问题。

(一)圆柱的认识

教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。

教学要求:

1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。

教学难点:认识圆柱的侧面。

教学过程:

一、复习旧知

1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?

2.引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)

二、教学新课

1.认识圆柱的特征。

请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?

2.认识圆柱各部分名称。

(1)认识底面。

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)

(2)认识侧面,小学数学教案《数学教案-圆柱和圆锥》。

请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的'一个面?(接前第二行板书:侧面是一个曲面)

(3)认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。

在说明的基础上画出下面的立体图形:

(4)认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)

3.巩固特征的认识。

(1)提问:你见过哪些物体是圆柱形的?

(2)做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……

4.教学侧面积计算。

(1)认识侧面的形状。

教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?

(2)侧面积计算方法。

①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。

②得出计算方法。

提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)

(3)教学例1

出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。

三、巩固练习

1.提问:这节课学习了什么内容?

2.做圆柱体。

让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。

3.做“练一练”第3题。

指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。

4.思考:

如果圆柱的底面周长和高相等,侧面展开是什么形状,

四、布置作业

课堂作业:练习一第2题。

家庭作业:练习一第3题。

数学教案-圆柱和圆锥

圆柱圆锥经验总结 第21篇

教学目标:

1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。

2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。

教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。

教学过程:

一、开门见山、温固引新。

师:还记得哪些与圆柱圆锥有联系的计算公式?

生:回答相联系的数学公式。

师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?

生:回忆基本知识。

师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?

1、抢答练习,请说出你的思考过程。

(1)一个圆柱体底面周长米,求它的底面积是多少平方米?

(2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?

(3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?

学生抢答,并说出自己的思考过程,教师板书。

2、解决数学问题:

(1) 出示一圆柱图

师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?

竞赛的形式来解决,竞赛要求:

1、时间3分钟。

2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。

(1) 学生独立完成;

(2) 同桌互查;

(3) 学生汇报;

(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)

(4)如果出现问题下面改正。

师:同学们数学只有在生活中才能体现它真正的价值,现在出现了一道生活中的数学问题大家愿意帮忙解决吗?

二、解决实际问题:

最佳设计方案。

师:问题是这样的.:面粉厂准备要招收仓库保管员,领导们打破了常规中只面试就招工的办法,而采用数学考试的方法,出了一道数学题。同学们有兴趣来应聘吗?

有一张长方形的铁板长米,宽米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)

学生活动,老师巡视。小组成员汇报方案。

三、深化应用。

师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?

四、课堂总结。

师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的心情及感受。

其他同学,通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?

五、补充题详见共享空间

课前思考:

潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。

因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。

下面补充这样几题:

市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深米。

(1)这个水池占地多少平方米?

(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?

(3)这个水池装满水,最多能装多少立方米?

(4)在池口围一圈栏杆,栏杆长多少米?

2.一辆压路机的前轮是圆柱形,轮宽米,直径是米。如果车轮每分钟滚动5周,10分钟压路面多少平方米?压路机10分钟前进了多少米?

3.一个圆锥形沙堆,底面半径3米,高2米,用这堆沙在5米宽的公路上铺10厘米厚的路面,能铺多长?

圆柱圆锥经验总结 第22篇

一、填空:

1、平方分米=平方厘米 ; 立方米=()升 ;

240立方厘米=()立方分米 ; 升=()毫升 。

2、圆柱的上、下两面都是()形,而且大小();圆柱的高有()条,圆锥的高有()条。

3、一个圆柱体,如果把它的高截短了3厘米,表面积就减少了平方厘米,体积就减少()立方厘米。

4、一个圆锥的底面积是40平方厘米,高12分米,体积是()立方厘米。

5、一个圆柱的底面半径是3分米,高2分米,它的侧面积是()),体积是( )。

6、一个圆柱的底面周长厘米,高是3厘米,它的体积是()

7、一个圆柱和一个圆锥等底等高,如果圆柱的体积是18)立方分米;如果圆锥的体积是18立方分米,那么圆柱的体积是(18立方分米,那么圆锥的体积是()立方分米。

8、把棱长为2)立方分米。(结果保留两位小数)

二、应用题

1、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了平方分米,那么这根木头原来的体积是多少?

2、将一块长方形铁皮,利用阴影的部分,刚好制成一个油桶,求这个油桶的体积。

3、将一块长10cm、宽6cm、高8cm木块的体积。

4、小明新买了一支净含量54cm36mm,他早晚各刷一次牙,每次挤出的牙膏长约20mm,这支牙膏估计能用多少天?

53:2,乙比甲高25厘米,两个圆柱各高多少厘米?

620平方厘厘米,圆柱的体积是多少立方厘米?

7、甲乙两个圆柱体容器,底面积之比是2:3,甲中水深6厘米,乙中水深8厘米,现在往两个容器中加入同样多的水,直到两容器中的`水深相等,求这时容器中水的高度是多少厘米?

圆柱圆锥经验总结 第23篇

教学内容:

第24页回顾与整理、练习与应用第1~6题。

教学目标:

1.使学生进一步认识圆柱、圆锥的特点。能判断一个物体或立体图形是不是圆柱或圆锥。

2.使学生进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法,并提高灵活应用计算方法解决一些实际问题的能力。

教学重点:

进一步认识圆柱、圆锥的特点。

教学难点:

进一步掌握圆柱的表面积、圆柱和圆锥的体积(容积)计算方法。

教学过程:

一、揭示课题

我们已经学完了圆柱和圆锥这一单元,今天开始复习圆柱和圆锥。(板书课题)通过复习,一方面,要进一步认识圆柱和圆锥的特征,熟悉圆柱和圆锥各部分的名称;另一方面,要进一步掌握圆柱表面积、圆柱和圆锥体积(包括容积)的汁算方法,提高解决实际问题的`能力。

二、复习特征

1.说出物体名称。

出示一些圆柱和圆锥的物体和模型,让学生说一说各是什么形体。

2.复习特征。

(1)同时出示圆柱和圆锥的图形。

指名学生说出各图的名称。(板书:圆柱、圆锥)

(2)提问:谁能拿出圆柱和圆锥,说出各部分的名称?(在图中板书)圆锥的高怎样测量,试着量一量你手里圆锥的高。

(3)提问:哪位同学来说说圆柱有什么特征?哪位同学来说说圆锥有什么特征?

三、复习计算

1.练习与应用第1题。

出示表格,说明要求,让学生计算,填在表格里。学生口答结果,老师板书填表。

提问:圆柱的表面积怎样计算的?(板书:圆柱表面积=侧面积+两个底面积)圆柱的侧面积怎样计算?为什么用底面周长乘以高? 这两题计算时有什么不同的地方?圆柱的体积怎样计算的,圆柱的体积计算公式是怎样得到的?(强调把个新知识转化成旧知识,得出新的结论)圆锥的体积怎样计算的?圆锥的体积计算公式又是怎样得到的?这两题计算过程完全一样吗?为什么不一样?

2.练习与应用第2题。

提问:压路机前轮是什么形状的?前轮滚动一周所形成的面的大小相当于前轮的哪一部分面积?接下来学生独立完成。

3.练习与应用第3题。

引导思考:水桶底部的铁箍大约长分米就是圆柱的底面周长。求做这个水桶至少要用木板多少平方分米就是圆柱水桶的哪些面的面积之和。这个水桶能盛120升水吗?要拿什么和120升比较?学生自主完成。

4.练习与应用第4题。

联系实际解决问题,要求得数保留整数。

四、课堂小结

通过这节课的复习,你有哪些收获?

五、课堂作业

练习与应用第5~6题。

圆柱圆锥经验总结 第24篇

单元教学要求:

1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:

圆柱体积计算公式的推导和应用。

单元教学难点:

灵活运用知识,解决实际问题。

(一)圆柱的认识

教学内容:

教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。

教学要求:

1、使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

2、使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

教学重点:

认识圆柱的特征,掌握圆柱侧面积的计算方法。

教学难点:

认识圆柱的侧面。

教学过程:

一、复习旧知

1、提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?

2、引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)

二、教学新课

1、认识圆柱的'特征。

请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?

2、认识圆柱各部分名称。

(1)认识底面。

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)

(2)认识侧面。

请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)

(3)认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。

在说明的基础上画出下面的立体图形:

(4)认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)

3、巩固特征的认识。

(1)提问:你见过哪些物体是圆柱形的?

(2)做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……

4、教学侧面积计算。

(1)认识侧面的形状。

教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?

(2)侧面积计算方法。

①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。

②得出计算方法。

提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)

(3)教学例1

出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。

三、巩固练习

1、提问:这节课学习了什么内容?

2、做圆柱体。

让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。

3、做“练一练”第3题。

指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。

4、思考:

如果圆柱的底面周长和高相等,侧面展开是什么形状,

四、布置作业

课堂作业:练习一第2题。

家庭作业:练习一第3题。

圆柱圆锥经验总结 第25篇

教学目标:

1、使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形.

2、使学生会计算圆锥的侧面积或全面积.

3、通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;

4、通过圆锥的面积计算,培养学生正确迅速的运算能力;

5、通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.

教学重点:

(1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;

(2)会进行圆锥侧面展开图的计算,计算圆锥的表面积.

教学难点:

准确进行圆锥有关数据与展开图有关数据的转化.

教学过程:

一、新课引入:

在小学,同学们除了学习圆柱之外还学习了一个几何体——圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容.

和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础.

圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点.

本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算.

二、新课讲解:

[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]

前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?[安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高.]

[教师边演示模型,边讲解]:大家观察rt△soa,绕直线so旋转一周得到的图形是什么?[安排中下生回答:圆锥.]大家观察圆锥的底面,它是rt△soa的哪条边旋转而成的?[安排中下生回答:oa]圆锥的侧面是rt△soa的什么边旋转而得的?[安排中下生回答,斜边],因圆锥是rt△soa绕直线so旋转一周得到的,与圆柱相类似,直线so应叫做圆锥的什么?[安排中下生回答:轴.]大家观察圆锥的轴so应具有什么性质?[安排学生稍加讨论,举手发言:圆锥的轴过底面圆的圆心,且与底面圆垂直,轴上连接圆锥顶点与底面圆心的线段就是圆锥的高.]圆锥的侧面是rt△soa的斜边绕直线so旋转一周得到的,同圆柱相类似,斜边sa应叫做圆锥的什么?[安排中下生回答:母线.]给一圆锥,如何找到它的母线?[安排中上生回答:连结圆锥顶点与底面圆任意一点的线段都是母线.]圆锥的母线应具有什么性质?[安排中下生回答:圆锥的母线长都相等.]

[教师边演示模型,边启发提问]:现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,哪位同学发现这个展开图是什么图形?[安排中下生回答:扇形.]请同学们仔细观察:并回答:1.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?扇形的半径其实是圆锥的什么线段?[安排中下生回答:扇形的弧长是底面圆的周长,即l=2πr,扇形

弧长已知,圆锥母线已知则展开图扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.

[教师边演示模型,边启发提问]:如图7—183,现在将圆锥沿着它的轴剖开,哪位同学回答,经过轴的剖面是一个什么图形?[安排中下生回答:等腰三角形.]这个等腰三角形的腰与底分别是圆锥的什么?[安排中下生回答:腰是圆锥的母线,底是圆锥的直径.]这个等腰三角形的高也就是圆锥的什么?[安排中下生回答:高].这个经过轴的剖面,我们称之谓“轴截面”,在轴截面里包含了有关圆锥的所有元素:轴、高、母线,底面圆半径.这个等腰三角形的顶角,我们称之谓“锥角”,大家不难

给定旋转一周得圆锥的那个直角三角形,当然给定半径、母线;圆锥侧面展开图——扇形的面积、圆心角可求、因此可以说有关圆锥的计算问题,其实质就是解这个直角三角形的`问题.

幻灯展示例题:如图7—184,圆锥形的烟囱帽的底面直径是80cm,母线长50cm,(1)计算这个展开图的圆心角及面积;(2)画出它的展开图.

要计算展开图的面积,哪位同学知道展开图扇形的弧长是圆锥底面圆的什么?[安排中下生回答:周长.]展开图形的半径是圆锥的什么?[安排中下生回答:母线.]

请同学们计算这个展开图的面积.[安排一中等生上黑板完成,其余学生在练习本上做].

解:圆锥底面圆直径80cm,∴底面圆周长=80πcm,又母线长50cm

=XXπ(cm2).

哪位同学到前面计算一下这个扇形的圆心角?[安排一名中下生上前,其余在练习本上做].

同学讨论一下这个扇形怎样画?[安排一中上学生回答:首先画一个

弧的扇形,r就是所要画的展开图.]

幻灯展开例题:图7—185中所示是一圆锥形的零件经过轴的剖面,它的腰长等于圆锥的母线长,底边长等于圆锥底面的直径,按图中标明的尺寸(单位mm),求:

(1)圆锥形零件的母线长l;

(2)锥角(即等腰三角形的顶角)α;

(3)零件的表面积.

图中给出等腰三角形的哪些尺寸?[安排中下生回答:高40,底边长34]哪位同学会计算圆锥形零件的母线长l?[安排一中等生上黑板,其余同学练习本上做][答案:l=]锥角α打算如何求?[安排一中等

∠dsb的正切.]请同学们求出α.[安排一中等生上黑板,其余在练习本上做],[答案:α≈46°4′]

零件的表面积等于什么?[安排中下生回答:圆锥的侧面积加上底面圆面积.]计算圆锥侧面积所需条件已具备了吗?计算底面圆面积所需条

请同学们把表面积求出来.[s≈3230mm2]

三、课堂小结:

请同学们回顾一下,本堂课我们学了些什么知识?[可安排中下生相互补充完整:1.圆锥的特征;2.圆锥的形成及有关概念;3.圆锥的展示图;4.圆锥的轴截面.]

四、布置作业

教材p.198;练习1、2;p.200中5、6、7、8.

圆柱圆锥经验总结 第26篇

预设目标:

使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。

教学过程:

教师:在这个单元里,我们学习了两种新的立体图形:圆柱、圆锥,知道了它们的特征、学会了如何求出它们的体积等知识。并学会运用这些知识解决一些简单的实际问题。

一、复习圆柱

1、圆柱的特征。

⑴圆柱有什么特点?⑵做第91页第1题的上半题。

2、圆柱的侧面积和表面积。

⑴教师:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)

圆柱的侧面积怎样计算?(底面的周长×高)

为什么要这样计算?(底面的周长=长方形的长,高=长方形的宽)

圆柱的表面积是由哪几部分组成的'?(圆柱的侧面积+两个底面的面积)

⑵做第91页第2题的第⑴、⑵小题,第3题上半题求圆柱表面积部分。

3、圆柱的体积。

⑴教师:圆柱的体积怎样计算?(底面积×高)计算的公式是怎样推导出来的? 圆柱体的体积计算的字母公式是什么?(v=sh)

⑵做第91页第3题的上半题求圆柱体积部分。

二、复习圆锥

⑴圆锥有什么特点?

⑵做第91页第1题的下半题和第2题的第⑶小题。

2、圆锥的体积。

⑴教师问:怎样计算圆锥的体积?计算圆锥体积的字母公式是什么?

这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)。

⑵做第91页第3题的下半题。

三、课堂练习

1、做练习二十三的第1题、第2题。

学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。

四、创意作业。

练习二十三的第3题。

圆柱圆锥经验总结 第27篇

圆锥圆柱练习题

一、填空。

1)一个圆柱形钢材长米,截成3段小圆柱后,表面积增加平方厘米,原来这根钢材的体积是( )。

2)一个圆锥和一个圆柱等底等高,体积相等立方厘米,已知圆柱底面积是平方厘米,圆柱的高是( )。

3)一个圆柱的体积比一个圆锥多 ,圆锥底面积是圆柱的倍,圆柱的高比圆锥的高多( )。

4)一个圆锥的底面积是8平方厘米,体积是24立方厘米,它的高是( )厘米。

5)一个圆锥的体积是36立方厘米,高是6厘米,它的底面积是( )平方厘米。

6)一个圆柱和一个圆锥体积与底面积分别相等,已知圆柱高是15厘米,圆锥高是( )厘米。

二、判断。

1)圆柱的体积是圆锥的3倍。………………………………………………( )

2)等底等高的长方体与圆柱体的体积相等。………………………………( )

3)将一个圆柱的底面半径扩大2倍,体积也扩大2倍。………………………( )

4)两个圆柱的侧面积相等,体积也相等。……………………………………( )

5)长方体、正方体、圆柱体的体积都可以用底面积乘以高来计算。……( )

6)一个圆柱体容器能装水2立方分米,我们就说它的容积是2立方分米。( )

7)两个圆柱体的侧面积相等,它们的底面周长一定相等。………………( )

8)一个圆柱体和一个长方体的底面周长相等,高也相等,它们的体积也一定相等。( )

三、选择。

1)将一个圆锥的高扩大6倍,底面积不变,那么圆锥的体积扩大( )。

倍 倍 倍

2)做一段圆柱形烟囱,要计算所需铁皮,是求圆柱的( )。

A.表面积 B.侧面积 C.容积

3)圆柱体体积不变,如果底面半径扩大2倍,高应该( )。

A.扩大2倍 B.缩小2倍 C.缩小4倍

4)把一个圆柱削成一个最大的圆锥,削去的体积是原来圆柱体积的( )。

四、算一算。

1)一个圆柱底面直径是10分米,高20分米。

①它的表面积是多少平方分米?

②它的体积是多少立方分米?

2)一个圆锥底面直径是12cm,高6cm。这个圆锥的体积是多少?

3)一个圆柱体的底面周长是,高8cm。

①它的侧面积是多少平方厘米?

②它的表面积是多少平方厘米?

③它的体积是多少立方厘米?

4)一个圆锥的底面半径是20厘米,高是15厘米。这个圆锥的体积是多少立方厘米?

四、解决问题。

1)做一个无盖的圆柱形铁皮水桶,底面半径是25cm,高50cm。需要铁皮多少平方厘米?

2)一个圆柱形粮仓,从里面量底面直径是6米,里面装有稻谷立方米,稻谷的高是多少?

3)有一个近似圆锥形麦堆,底面周长,高,如果每立方米小麦约重740千克,这堆小麦约多少千克?(结果保留一位小数)

4)一个圆柱形水桶里水面高度是12cm。在桶里放入一个圆锥形钢坯(浸没水中),这时水面高度上升至15cm,如果水桶的底面直径是20cm。这个钢坯的体积是多少?

5)在一个底面直径是4分米的圆柱形水桶中,放有一个底面直径2分米的圆锥形铅锤(完全浸没水中),桶里水面上升2厘米,铅锤的高是多少?

6)把一个底面直径9厘米的圆柱体侧面展开,得到一个正方形,这个圆锥的高是多少厘米?

7)把一个高8分米的圆柱体割拼成一个等底的近似长方体后,表面积增加了24平方分米,圆柱体的`体积是多少?

8)一个圆锥的底面积是一个圆柱底面积的 ,圆锥的高是圆柱的3倍,圆柱的体积是圆锥的多少?

9)一个圆柱底面半径等于一个圆锥的底面直径,圆柱的高是圆锥高的 ,圆锥体积是圆柱的多少?

10) 一个底面半径为10厘米的圆柱形容器里装着水,现把一个底面直径4厘米、高5厘米的圆锥形铅锤放入水中(完全浸没),水面升高了多少厘米?

11)一个圆锥形沙堆,底面周长,高。

①这个沙堆的占地面积是多少?

②这个沙堆的体积是多少立方米?

12)一只饮料瓶如图所示,这个瓶子的容积大约是多少?

圆柱圆锥经验总结 第28篇

一、说教材。

《圆柱和圆锥是小学阶段几何知识的最后一部分新课内容,内容包括:面的旋转、圆柱的表面积、圆柱的体积及圆锥的体积四小节,本节复习课旨在通过回顾梳理,交流互补,使学生将零散的知识在头脑中串成线,联成片,形成完整的知识网络,加深各个图形之间的内在联系,综合运用有关知识解决实际问题。

《课程标准》中对本学段的教学要求是:认识并掌握圆柱体、圆锥体的特征,明白表面积和体积的意义,通过操作、实验、转化、类比、推理等逻辑方法得到表面积和体积的计算方法,掌握常用的体积(容积)单位,会计算一些形体的表面积和体积(容器的容积),并能应用所学知识解决简单的实际问题。

二、根据此要求以及学生的特点,我确定了如下的教学目标:

1、通过复习、交流,我会说出圆柱和圆锥的特征和相关的计算公式。

2、通过练习、展示,我会运用公式正确解决有关圆柱的表面积和体积及圆锥体积的实际问题。

三、教学重点:运用所学知识解决实际问题。

四、教学难点:综合运用所学知识解决问题。

五、说教法学法。

本节课我采取 “练习法”,让学生在回顾整理、交流互补、巩固练习、展示自我等一系列活动中掌握知识、发展智力、锻炼能力。

六、说教学过程

“复习课”作为数学课的一种基本类型,它不同于新授课的探索发现,也有别于练习课的巩固应用,它的一个重要功能就是引导学生对所学的知识进行整理,把分散的知识综合成一个整体,使之形成一个较为完整的知识体系,提高学生对知识的掌握水平。承载着“回顾与整理,沟通与生成”的独特功能。本节课我设计了以下几个环节:

第一环节:谈话导入,明确目标。本学期,我们结识了小学阶段几何形体中的最后两位朋友,他们是——(圆柱和圆锥)。我们通过努力,知道了它们的来历,摸清了它们的特征,学会了计算圆柱的表面积、侧面积、体积以及圆锥的体积,体会到了它在我们生活中的作用。今天,让我们来盘点一下自己的收获,重温一下它们相关的知识吧!今天我们就来复习——圆柱和圆锥。谈话中,我把圆柱和圆锥比作朋友,拉近了学生和知识的距离,“知道了它们的来历,摸清了它们的特征,学会了计算圆柱的表面积、侧面积、体积以及圆锥的体积,体会到了它在我们生活中的作用”这几句话既简要概括了本单元所学的主要内容,又给学生的复习活动提供了线索。

第二环节:回顾梳理、形成网络。课前交流,(先独立写出圆柱和圆锥的特征及圆柱的侧面积、体积与圆锥的体积公式及其变形公式,再在小组内交流你的成果。)。这个环节当中,我让学生用自己喜欢的方法把《圆柱和圆锥》的相关知识进行分类整理,然后进行全班汇报。在这一过程中,学生可以相互启发,相互补充,使知识的结构不断完善,同时也培养了学生整理与复习的能力。

第三环节:运用知识、解决问题。自主学习,本环节习题的选择,我经过了精心考虑,题目具有一定的基础性、启发性;交流展示,本环节习题具有综合性、代表性与典型性,有能“牵一发而动全身”的题目,帮助学生从中找出解题规律与方法,也有一题多变的题目开阔学生思路,使学生通过复习有新的收获、新的体会。

第四环节:达标检测,检验学生的复习情况。

第五环节:课堂小结,通过复习,你对哪些知识掌握更牢固了,还有没有疑点没有解决,说一说吧!

七、说教学板书

特征:圆柱、圆锥

圆柱表面积、侧面积

体积:圆柱、圆锥

圆柱圆锥经验总结 第29篇

教学内容

教材第1819页的例1,完成第19页的练一练和练习五的第14题。

教学目标

1.使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。

2.认识圆柱和圆锥的底面、侧面和高,并会测量高。

教学重点

1.让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。

2.认识圆柱和圆锥的高,并会测量高。

教学难点

认识圆锥的高。

教具准备:

教师准备圆柱体、圆锥体的物体,让学生收集一些圆柱体、圆锥体的实物。同时让学生将教科书第125、127页上的图沿边剪下来做成圆柱体、圆锥体。

一、激趣引新

1、师出示准备的模型圆柱,圆锥,提问,这是什么形体?

师指出:圆柱体简称圆柱,圆锥体简称圆锥。

2、举例:你在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)

3、师出示挂图,提问,生活中的例子很多,你看这张图上哪些物体的形状是圆柱,哪些物体的形状是圆锥?

4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)

二、自主探究,认识圆柱和圆锥的特征。

1、认识圆柱

⑴谈话,请看挂图,刚我们看到的圆柱有大的,有小的,有高的.,有矮的,还有这么扁的,同学们桌面上也有大小不一的圆柱,仔细观察这些圆柱,你发现这些大小不一的圆柱有什么共同点?(学生独立思考后同桌交流后自由发表意见,师根据学生回答适当板书)

⑵验证发现:上下面是两个完全相同的圆

刚才同学说上下两个面是完全相同的圆,请你想办法证明一下,这个猜想是否正确?

学生可能:a把茶叶筒的盖头拿下来比划b用线绕c用尺亮圆的直径

侧面是弯曲的:把你手中的圆柱摸一摸,滚一滚,你发现它的这个面与桌面有什么不同?侧面滚一滚,滚出一个什么形状?

⑶师指出:这是沿着圆柱形物体的轮廓画下来的圆柱的平面图

圆柱上下两个面叫做圆柱的底面(板书底面,图中标出底面)

围成圆柱的曲面叫做圆柱的侧面

圆柱两个底面之间的距离叫做圆柱的高(板书,在图中标出)

提问:圆柱的高有多少条?它们之间有什么关系?(师出示装满牙签的牙签盒让学生体会)

验证圆柱的高都相等:把圆柱放在桌角量高,变换角度量高,量出的结果一样吗?

⑷练习:说说师手中的杯子,方便面碗是不是圆柱,为什么?指出自己手中圆柱的各部分名称,指出下列圆柱各部分名称

2、认识圆锥

⑴谈话:某些建筑物的顶部,吃的蛋筒,这些物体的形状都是圆锥体,请你观察这些圆锥,说说它们有什么共同点?(学生自由交流,师适当板书)

有一个顶点,底面是一个圆形,侧面是一个曲面

⑵看书对照你的发现是否正确

⑶师指出:图锥的底面是一个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。(边说边在图上标出来)

提问,圆锥的高有几条?

滚动圆锥,你有什么发现?

辨析,这是圆锥的高吗?那你认为怎样测量圆锥的高?师出示图

⑷指出你手中圆锥各部分名称

3、比较:观察圆柱和圆锥有什么不同之处?

师可引导提问:圆柱和圆柱都有一个侧面,侧面都是一个曲面,为什么圆柱滚动侧面时与圆锥滚动侧面的感觉不一样?

三、巩固练习

1、练一练:判断哪些物体的形状是圆柱,哪些物体的形状是圆锥?

2、练习五第二题,连一连。

3、练习五第三题:先让学生根据题意转一转,想象一下,再交流。

圆柱的底面半径与高与长方形小旗有什么关系?

4、拿出硬纸做的圆柱和圆锥,想办法量出它们的底面直径和高,记录再自备本上,

四、全课小结:

这节课你有什么收获?

圆柱圆锥经验总结 第30篇

一.教材地位

本单元是在学生掌握了圆、长方体、正方体等有关知识的基础上进行教学的,是小学阶段几何知识学习的最后一部分内容,是以后进一步学习几何知识(立体几何、三视图)的基础。圆柱和圆锥(教材中的圆柱体指的是直圆柱,简称圆柱;圆锥指的也是直圆锥)的侧面是曲面,本单元的学习会使学生对立体图形的认识更深入,更全面,有利于进一步发展学生的空间观念。

二.单元教学目标

1.在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。

2.结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱、圆锥体积的计算方法,并能解决简单的实际问题。

3.经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。

4.在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解掌握一些数学方法。

三.单元教学内容

信息窗

知识点

信息窗一

冰淇淋盒

圆柱和圆锥的认识

信息窗二

制作圆柱形纸筒

圆柱的侧面积和表面积

信息窗三

冰淇淋包装盒容积

圆柱和圆锥的体积

四.单元编写突出特点

1.打破了传统的知识编排顺序,加强了圆柱和圆锥的对比和联系。

本单元的教材编排了三个信息窗,分别是圆柱、圆锥的认识,圆柱的表面积,圆柱、圆锥的体积。在信息窗1里,同时安排了圆柱和圆锥的认识,学生可以通过对圆柱和圆锥模型的观察、操作和比较,更清晰地了解它们之间的联系和区别,发现并掌握圆柱和圆锥的特征。在信息窗3里,在学习圆锥的体积之后,又以对话的形式展示学生的猜想:圆锥的体积与圆柱有关。引导学生用实验的方法探索圆锥和圆柱体积之间的关系。这样将圆柱和圆锥编排在一起进行教学,打破了传统的逐一学习的格局,加强了圆柱和圆锥的对比,更有利于学生通过发现、探索,理解和掌握圆柱和圆锥的有关知识。

2.体现从猜想到验证的学习过程,渗透研究数学问题的与方法。

本单元教材编写,重视对数学与方法的引领,如:第三个信息窗对圆柱体积计算方法的探索,很好地体现了这一点。教材了这样的思路:由回忆圆的面积公式的推导方法为切入点(化圆为方),实现思维上的迁移,猜想:圆柱的体积公式可能是把圆柱转化成长方体来推导。这样的编写,有利于帮助学生了解研究数学问题的思路与方法,提升学生研究数学问题的能力。

五.单元课时统筹

信息窗一

信息窗二

信息窗三

圆柱、圆锥认识、练习:1课时

圆柱的表面积探索、基本练习:1课时

圆柱的体积探索、基本练习:1课时

回顾、练习:1课时

巩固练习:2课时

圆柱体积巩固练习:1课时

综合练习:1课时

圆锥体积探索、基本练习:1课时

圆柱和圆锥体积巩固练习:2课时

六.教学建议

信息窗一:冰淇淋盒

1、教学内容:.圆柱和圆锥的特征

2、信息窗的介绍:图中为我们了两种不同形状的冰淇淋包装盒。

例题的设置:

第一个红点:初步认识圆柱和圆锥。

第二个红点:学习圆柱和圆锥的特征。

3、信息窗教学建议:

第一、老师要注重学生已有的生活经验。

圆柱和圆锥对学生来说,并不陌生。如何让高年级学生充分借助已有知识经验,综合自己所掌握的各项技能,对圆柱的特征产生深刻的感性认识,建立“圆柱”的表象,是教师备课中应考虑的。因此在教学过程中,教师要让学生广泛地找一找生活中经常见到的圆柱和圆锥的物体,同时可以提前让学生自己先回去做一个圆柱,课中让学生结合自己做图形说一说,对于这两种形体自己有哪些了解。

第二、多给学生一些动手操作的机会。

立体几何图形的学习关键是学生要有空间观念,而培养学生空间观念的最佳途径就是要动手操作,因此在课堂上要让学生反复地摸一摸、量一量、比一比,从而归纳出圆柱圆锥的特征。

第三、注重多媒体的应用,培养学生的空间观念。

让学生把眼中的实物抽象出几何体,让学生认识圆柱圆锥的高。都有一定的难度,教师可以充分借用媒体,来化解这一难点。特别是要利用多媒体帮助学生区分出高和母线。条件不具备的学校要借助于教具,让学生认真观察、充分地展开想象,达到上述目的。

4、练习的分析:

练习要注意让学生在动手操作的基础上培养学生的空间观念。

自主练习第3题是培养学生想象能力、建立空间观念的题目,同时也为学生进一步学习表面积做铺垫。练习时,可以让学生先想一想,再连线。还可以作为学生动手操作的题目,让学生按照图中所示,找一些实物,沿着高剪开,初步认识圆柱和圆锥的侧面展开图。实际是为下一窗口学习圆柱的侧面积做铺垫,结合学生的想象,对于理解困难的学生,教师要让学生亲身动手操作,以加深理解。这一部分好多题目要加强实际操作,象练习中的第四题也要让学生亲自动手做一做。

第5题也是对学生空间观念进一步培养的题目,练习时可以先让学生进行想象,然后在想象不是非常清晰的情况下,让学生进行实验,然后抛开实验,进一步进行想象,这样一步步加深理解。

第6题要让学生明白两点:一是彩带的长度与圆柱的直径和高之间的关系,第二点要让学生发现圆柱底面也有与上面重复的彩带。

“课外实践”是让学生到生活中寻找圆柱形和圆锥形的物体并测量底面直径和高。教师要注意引导学生掌握测量圆锥高的正确测量方法:(1)先把圆锥的底面放平;(2)用一块木板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离。(教参中所述的页码不对,是49页)

信息窗二:制作圆柱形纸筒

1、教学内容:圆柱的侧面积和表面积

2、信息窗的介绍:图中左侧呈现的是圆柱形纸筒制作车间生产纸筒的情境,右侧的纸筒标示出了底面直径和高。

3、信息窗的教学建议:

第一、加强直观操作,让学生直观理解圆柱的表面积与侧面积。

这里所说的操作,应是两点,一指课前操作。教师课前让学生们自己动手做一个圆柱形的纸筒,结合自己做纸筒的过程,交流自己是怎么做出来的。根据学生的回答课件出示纸筒制作车间做纸筒的过程。从而使学生更清晰了解纸筒的制作过程。从而让学生认识到圆柱的表面积是两个圆面积和一个侧面的面积。二指课中操作,重点解决侧面面积的计算方法,教师让学生通过剪一剪、拼一拼,认识到圆柱的侧面展开实际是一个长方形,而这个长方形的长和宽分别应该是底面的周长和高,这是学生非常难理解的,在这里要借助反复地操作和多媒体课件的展示学生理解。从而得到侧面积应该是底面周长×高。

第二、注重几个概念的区分。

这一窗口涉及到了好几个概念,如侧面积、表面积、底面积、底面周长等等。很多教过五年级的教师都有这种感触,学习这一部分知识时,一个知识点一个知识点地进行,学生们掌握得不错,但当把所有的知识点合到一起的时候,学生都乱套了,为什么,主要原因学生对这几个概念的理解。到底求什么要用到底面周长,求什么要用到底面积,让学生头脑清晰一些。

4、练习的分析:

自主练习第2题是教师要让学生明白求商标的面积实际上就是求圆柱的侧面积,同时注意该题的结果要用到“进一法”取近似值。

第3题学生理解起来比较难,因此练习时,要让学生用圆柱代替压路机的前轮,让学生通过演示明白,压路机转一周得到的是一个长方形,而求压路机转动一周的长,实际上就是求压路机的侧面积。如果学生不能理解可以用课件进一步强化对这一生活现象的理解。

第5题实际上是对圆柱表面积的一个深入理解题,这道题教师要让学生明白理解思路:第一看到长方形,我要怎样把长方形围起来,围起来以后谁做了底面的周长?第二底面周长知道了,那么怎样计算它的底面直径?从而根据底面直径对下面几种底面进行相应的选择。

第8~10题都是解决生活中的实际问题,练习时,建议把第8题或者第9题做为半例题处理,第10题应该提醒学生单位的转化。通过练习,进一步巩固圆柱的侧面积、表面积的计算方法,提高学生解决现实问题的能力。先让学生根据实际问题的特点,明确是求的哪些面的面积,再具体问题灵活解决,防止生搬硬套。

第12题是一道思考题可以根据本班的实际情况,先让学生独立完成,然后交流、反馈,也可以让学生动手操作体验一下,然后再解答,通过交流,使学生知道每截一次,表面积就增加两个底面的面积,该木料截成4段,需要截3次,增加了6个面,面积是36平方米。

信息窗三:冰淇淋包装盒容积

1、教学内容:圆柱和圆锥的体积

2、信息窗的介绍:这幅图呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。

例题的设置。这里有两个红点,红点一是学习圆柱的体积。红点二是学习圆锥的体积。

3、信息窗教学建议:

第一、启发诱导学生,回忆以往解决数学问题的和方法,通过猜想和操作,找到圆柱体积的计算方法,引领学生实现方法的迁移。

怎样求圆柱的体积,对于学生来说比较难于想象,这时教师可以让学生通过回忆以往解决数学问题的方法,从而让学生产生了要转化圆柱想法。联想到了圆面积公式的推导,脑子里出现圆面积推导的方法,将圆转化成长方体,圆柱与圆有着类似的地方,想到可能是把圆柱转化成长方体。有了这个猜想,就要去进一步验证。

第二、让学生在操作中理解圆柱、圆锥的体积。

教学圆柱的体积时,教师可以为学生准备一些圆柱形状的实物,如萝卜等,让学生以小组为单位试一试,怎么把圆柱转化为长方体,结合学生的操作,教师也可以用多媒体或教具再现这个过程,让学生更形象直观的看到这个转化的`过程。通过这种操作进一步让学生体会转化的数学,要注意引导学生理解长方体与圆柱之间的关系,进而推导出圆柱的体积公式。(解释教材中为什么将体积的立方厘米转化成了毫升)。

圆锥的体积学生理解不是很难,教师在教学时根据教材中所的思路,首先引导学生进行猜想,圆锥的体积可能与什么有关系?有怎样的关系?其次,让学生设计实验进行操作,通过验证得出结论。第三、在操作的过程中让学生亲身体会到三分之一。在应用过程中,学生容易出的错是漏写1/3,为解决这一难点,教师在教学过程中,尽可能让学生通过实验理解圆锥与它等底等高的圆柱的关系,让学生亲身经历这一过程,以加深印象。教材呈现的实验只是一般的一个实验,教学时可以设计其它的实验。(可以补充讨论时的问题及想到的)

4、练习分析

圆柱和圆锥的体积放到一起时学生有些时候很容易混淆,要让学生反复加强基础练习。

第12题练习时,首先要让学生明确把圆柱捏成圆锥,体积是不发生变化的,得到了圆锥的体积和它的底面半径,就可以利用算术式或者是方程得到圆锥的高度。进一步观察学生也可以从圆柱和圆锥的关系中找到他们之间高的关系。由此可以让学生进一步研究等体积等高,底面直径的关系等。

第13题难度较大,学生必须有空间观念,在脑子中知道我这个圆柱是怎么样折成的,哪里做了底面周长,哪里做了高,这样才能算出正确的结果,如果学生想象不出来,一定要让学生用纸亲自折一折,这样进一步明确圆柱的底面周长和高。加强空间观念。

第※14题是一道有一定难度、综合性比较强的题目。练习时,要先使学生明确:三种图形的体积都可以用“底面积×高”计算,因为它们的高相等,所以只需比较底面积的大小即可。然后进一步引导学生思考:当周长相等时,圆、正方形、长方形,谁的面积最大?这一问题。可让学生把它们的周长假设成一个具体的数(如:),再通过计算比较面积的大小;也可以给学生一段绳子,通过围一围、量一量、算一算,找到答案:当周长相等时,圆的面积最大,正方形的面积次之,长方形的面积最小。从而得到最后的答案:圆柱的体积最大。(计算时可用计算器)

“聪明小屋”这一题,难点是让学生理解表面积。教学过程中,教师要充分借助学具让学生理解。要让学生充分理解所谓的表面积就是表面的面积,所以应该是长方体的表面积去掉两个底面圆的面积。再加上圆柱的侧面积。学生理解起来比较困难,可以借助实物让学生来进一步理解。同时可以出示其它形状,让学生来说一说它们的表面积和体积。

回顾有两部分,上半部分是对本单元学过的知识进行梳理,圆柱和圆锥是以表格的形式让学生回顾圆柱和圆锥的特征和体积公式。下半部分是研究问题的方法。

第一种:自主式回顾。

青岛版教材在回顾方面从低中年级就比较注重,到了高年级,学生完全有能力进行自主地回顾与。可以让学生独立或者是小组合作交流,在交流中对本单元学了哪些知识进行回顾。

第二种:回顾时,教师可重点对研究问题的过程与方法进行引领。

综合练习第3题学生会感到很陌生,因为对雨量器学生并不了解,所以首先要结合图意让学生明白雨量器是怎样的结构,并结合要解决的问题让学生明白第一个问题,求做一个雨量器的外壳至少要用多少平方厘米的材料这是求雨量器的表面积(只有一个底面)。第二个问题求储水瓶里一共接了多少雨水?这是求一段圆柱的体积。在学生明确了这个以后再让学生自己来进行计算。

圆柱圆锥经验总结 第31篇

教学内容:

练习二第14页内容。

教学目标:

1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

教学重、难点:

运用所学的`知识解决简单的实际问题。

教学过程:

一、复习

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

二、实际应用

1、练习二第7题

(1)学生通过读题理解题意,思考“需要白铁皮多少平方米”是求几个面的面积?(侧面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

(3)集中分析评讲。

2、练习二第8题

学生独立完成这道题,集体订正。

3、练习二第9题

指名板演,其他学生独立完成于课堂练习本上。

4、练习二第10题

(1)学生读题理解题意。

(2)提问:这个“博士帽”是由哪几部分组成?分别求哪些面的面积?

(3)学生自主完成。

(4)集体评讲,注重后进生辅导。

5、练习二第11题

(1)学生读题。

(2)提问:要想求“这根花柱上一共有多少朵花必须先求什么?。

(3)学生独立完成

6、练习二第12题

(1)学生读题。

(2)引导思考。

(3)集体练习

7、练习二思考题(学有余力学生完成。)

引导思考:截成3段截了几次?一共多了几个面?几个什么样的面?那么表面积增加了多少平方厘米呢?如果截成4段、5段会做吗?接下来学生练习。

三、课堂小结

通过今天的练习,你对圆柱的侧面积和表面积有了哪些新的认识?

四、课堂作业

基础训练。