安承悦读

几何画板创新应用总结(通用6篇)

admin
导读 [3]吴红军.“几何画板”在初中代数教学中应用例析[J].理科考试研究,(6).[1]孙云飞.浅谈几何画板在函数教学中的应用[J].中国教育信息化,(8).[2]姚淑华,李孝诚.几何画板在中学数学教学中应用模式的探讨[J].电脑知识与技术.30期

几何画板创新应用总结 第1篇

浅谈《几何画板》在辅助小学数学教学中的作用与效果

摘要:《几何画板》在中学数学教学中有着广泛的运用,但它在小学数学教学中的运用相对滞后,使用者很少,用它制作的课件更少。本文从《几何画板》的优势入手,通过实例结合教学实践论述《几何画板》在小学数学教学中的辅助作用及效果,最后针对实际情况提出《几何画板》运用于数学教学时需注意的问题。

关键词:几何画板 优势 作用 效果

新课程标准指出,一切有条件和能够创造条件的学校,都应使计算机、多媒体、互联网等信息技术成为数学课程的资源,充分利用这些资源,让它为教学服务,并积极组织教师开发制作课件。《几何画板》作为一款优秀的专业学科教学平台软件,它是一个动态讨论问题的工具,对发展学生的思维能力、开发智力、促进素质教育有着不可忽视的作用。用《几何画板》与学生共同探讨问题,探求未知的结论,可以开阔思路,培养能力,提高数学素养。《几何画板》不仅适合于“空间与图形”的教学,同样可自如地运用于“数与代数” 、“统计与概率”等教学内容。下面,我结合自己的教学实践,对《几何画板》在小学数学教学中的运用谈几点体会。

一、《几何画板》在辅助数学教学中的优势

《几何画板》在中学数学教学中已经有着广泛的运用,但在小学数学的教师中相对滞后,使用者很少,用它制作课件更少。大多小学数学教师使用Powerpoint、Flash、Authorware等软件制作课件,但寸有所短,尺有所长,在辅助小学数学教学方面,《几何画板》有它得天独厚的优势。

优势一:简明。只要用鼠标点取工具栏和菜单就可以开发课件。编制程序比较简单,只需借助于几何关系就可表现,非常适用于能够用数学模型来描述的内容.。因此,它非常适合我们数学教师使用。

优势二:朴素。它的界面清爽干净,仅一块白板而已。也正是因为它的朴素,从而使它对反映的问题显得直接而清楚,使课件本身对问题的阐述、剖析及对难点的突破显得有效而又有针对性,这正是一个好的教学辅助软件必备的条件——针对性。

优势三:省时。如果有设计思路的话,用《几何画板》进行开发课件速度非常快。一般来说,操作较为熟练的老师开发一个难度适中的软件只需5--10分钟。正因为如此,教师才能真正把精力用于课程的设计而不是程序的编制上,才能使技术真正地促进和帮助教学工作,进一步提高教育教学质量。

优势四:直观。可以用鼠标拖动图形上的任一元素(点、线、圆),而事先给定的所有几何关系(即图形的基本性质)都保持不变,这样更有利于在图形的变化中把握不变,深入几何的精髓。

二、《几何画板》在小学数学教学中的辅助作用及效果

1、利用《几何画板》培养学生的口算兴趣

口算是指不借助工具直接通过思维,求出结果的一种计算方法。口算具有计算速度快,在日常生活中运用广泛的特点。众所周知,口算既是笔算、估算和简便计算的基础,也是计算的重要组成部分,只有坚持经常练习,才能逐步达到熟练的程度。一、二年级口算能力的高低将直接关系到高年级数学计算能力的培养,但一味地让学生反反复复枯燥地练习,学生的兴趣较低,效率不高,学生越算越没心劲。起初,我利用上课前几分钟每堂课都对学生进行练习,但好景不长,学生练了几天就觉得没兴趣了。为此,我大伤脑筋,怎样才能把学生练习口算的积极性调动起来呢?

几何画板创新应用总结 第2篇

《几何画板》在平面几何教学中的应用的论文

摘要:《几何画板》以“动态几何”为特色来动态表现设计者的思想,在平面几何教学中有广泛的应用。

关键词:几何画板;平面几何;辅助教学

《几何画板》是一个数学教学和学习的工具软件平台,它以其学习容易和操作简单的优点及其强大的图形和图像功能,方便的动画功能被许多数学教师看好。使用《几何画板》制作课件,体现的是教师的教学思想、教学水平以及几何构建思想。那么,《几何画板》在平面几何教学中有哪些应用呢?

一、动态演示图形中数量和几何关系的变化过程和趋势

传统的平面几何教学是利用简单的几何图形和一系列的公理、命题、定理、推论等来推导、证明几何关系和几何结论,从而揭示几何图形中各部分之间的数量关系,不易动态地揭示图形中数量和几何关系的变化趋势,正是从这点出发,运用《几何画板》辅助教学,动态地演示图形中数量和几何关系的变化过程,使学生通过作图、观察、总结得出几何概念和几何规律,从而更好地领会几何公理、定理和几何命题。

如,在讲述直线与圆的位置关系时,传统的教法是把先研究圆心到直线的距离与圆半径的大小关系,然后再把这个关系与直线与圆的位置关系对应起来。有了《几何画板》,我们可用电脑演示直线与圆的相对运动的变化过程,并鼓励学生观察思考:当圆运动时,它和直线发生了哪些方面的.变化?这些变化可分成几类?分类标准是什么?能否用数量关系来揭示直线和圆的这种位置关系?

二、测量和计算

《几何画板》计算功能的最大特点是:不论几何图形如何变化,图形中各元素的属性都可以动态地表现出来。

如,在讲三角形的性质时,我们可以在画板上做一个任意三角形,度量出三角形三边的长和三个角的度数,然后拖动三角形的任一顶点,让学生去探索三角形边的关系和角的关系以及它们之间是否存在某种不变的数量关系?接下来利用《几何画板》的计算功能,罗列出任意两边的和与第三边的比,任意两边的差与第三边的比,以及三内角的和。再做三角形任一顶点的动画,让学生认真观察,讲述其中的内在关系。

三、显示动点轨迹的形成过程

利用《几何画板》还能直观地呈现出动点轨迹的形成过程,能激发学生的求知欲,从而鼓励他们去探究、猜想、培养学生的创新意识。

例如,圆锥曲线的统一定义是:到定点(焦点)的距离与到定直线(准线)的距离的比等于常数e 的点的轨迹,当01时是双曲线,当e=1 时是抛物线。这一定义表明了圆锥曲线间的内在统一,教材中是通过分别求出轨迹方程加以说明的,实际教学中以传统教学手段较难体现其内在的统一性,更无法进行如《全日制普通高级中学数学教学大纲》( 年2 月)所要求的“结合教学内容,进行运动,变化观点的教育”.若借助《几何画板》这一动态几何工具辅助教学,则能揭示其间的规律,加强互动性,利于学生的认知和掌握。

现在的数学教育,计算机已走进课堂,教师用《几何画板》辅助教学,可以很方便地做数学实验,这时教师应该用更多的时间让学生去思考和理解更本质的东西,学会提出问题和自己动手解决问题,从而达到帮助学生更深入地思考数学,培养学生的数学思想,方法及其应用的理解和掌握,重现现实问题的解决。《几何画板》辅助教学正好提供了这种实现的方法,它呈现在人们面前的是动态的几何,弥补了传统几何教学的不足,是我们实施素质教育的有力工具。

参考文献:

赵国义。用《几何画板》教学的体会.数学通报,2002(11)。

几何画板创新应用总结 第3篇

“几何画板”在数学中的使用

摘 要:指数函数y=ax与对数函数y=logax(a>0且a≠1)互为反函数,它们的图像关于直线y=x对称,当底数a>1时,它们有无交点呢?当底数0在高中阶段的教学过程中,对函数图像的画法要求并不是很高,多数函数图像都只要求能作出简图就可以了,特别是求超越方程解的个数的时候,常转化为求函数图像交点的个数问题,只需画出其大致图像就可以解决。正因如此,我们就往往忽略了画出的函数图像要与实际大体相符,如果相差太远,不但使我们得不到正确的结果,甚至会产生一些错误的认识,就像前面提出的问题一样,如果我们认为底数a>1时,它们的图像无交点,底数0。

关键词:巧解;函数图像;交点个数;几何画板

一、问题的出现

一天,一位学生问我:“指数函数y=ax(0)

二、探索之旅

1.寻找函数y=(1/16)x与y=log1/16x的图像的交点

为了弄清楚这两个函数的图像究竟有多少个交点,我拿了一张A3纸,认真地去画这两个函数的图像,但相交部分太靠近了,怎么才能使画出的图像与实际图像相符呢?虽尽了最大努力画好后,也完全看不出还有其他交点的.情况,只好作罢。

后来在无意中发现,《几何画板》这个数学软件,有强大的函数作图能力,于是就想,是不是可以用它把两个函数的图像画出来,不就清楚了吗?赶紧打开《几何画板》,不一会便画出了两个函数的图像。然而没想到的是,它们的图像画出来也仍然如此,在中间一部分已基本重合在一起,究竟有多少个交点,完全看不清楚,又试图把图象放大一些,也无计于事。开始还以为是受分辨率影响,但后来已调到最佳状态,也不能清楚地显示出交点情况来。

是不是就没有办法呢?不甘示弱的我沉闷了半晌,又想出了一个怪招,即把两个函数进行作差,构造成一个新的函数,即y=(1/16)x-log1/16x,画出它的图像。因为两个函数图像的交点个数就是这个新函数的根的个数,即新函数与x轴的交点个数,但图像与x轴相交的那一部分,依然不能看清,再一次以失败告终。

我又仔细地对图像进行了观察,心想这个新图像应是有一部分在x轴上方,一部分在x轴的下方,才能说明它与x轴有交点,如果再把图像的上下拉长,不就清楚了吗?于是又在函数前加了一个系数10,即利用《几何画板》画出了函数y=10[(1/16)x-log1/16x]的图像,终于清楚了一点,再把系数换成100,即又画出了函数y=100[(1/16)x-log1/16x]的图像,则完全清楚了,脸上终于露出了笑容。它的图像如右图所示,尽管它的差值被放大了100倍,但它的两个突起部分都仅有约1毫米高。

2.探索函数y=ax与y=logax(0 有了上面肯定的结论,我们便可以探寻这两类函数交点的个数变化情况,首先,将函数y=ax-logax中底数a逐渐增大,就会看到图像与x轴两边的交点逐渐向中间靠拢,直到a值约为时,即使图像振幅放大到10万倍,都不能看出是三个交点了,因此,此时的a值应是三个交点重合在一起的条件。如果将底数a值继续增大但要小于1时,则只有一个交点的特征就越来越明显,至此再无其他的交点。

如果将底数a值逐渐缩小,则图像与x轴两边的交点逐渐向两边分开,左边一个逐渐靠近坐标原点,另一个靠近点(1,0),其差值也增大,是三个交点的特征越来越明显。

再来观察一下数值,它与(1/e)e (e为自然对数的底数,e≈…)的值非常接近,而当a取(1/e)e时,函数式变为y=e-ex+(1/e)lnx,此时函数与x轴的交点刚好为(1/e,0),即方程(1/e)ex=-(1/e)lnx的解为1/e,所以这时两函数只有一个交点,这个交点为(1/e,1/e),正好在直线y=x上。

由此,可以得出函数y=ax与y=logax(0 3.探索函数y=ax与y=logax(a>1)的图像的交点个数变化情况

当这两个函数的底数都大于1时,是否它们的图像就无交点呢?再次利用《几何画板》画出函数y=2x-log2x它们的图像,发现它与x轴并无交点,先把底数a的值缩小,如y=√2x-log√2x,它的图像与x轴就出现了两个交点,因此这两个函数的图像就应有两个交点了,当再次缩小时,这两个交点则更加明显,然后就增大底数,当底数a的值约为时,函数出现了一个交点,而这个值与e1/e很接近,而当a=e1/e时,函数解析式化为y=ex/e-elnx,此函数与x轴的交点为(e,0),即两个函数图像的交点为(e,e),也恰好在直线y=x上,若再增大,则最多只有两个交点。

由以上分析知,对于函数y=ax与y=logax(a>1)而言,当底数a∈(1,e1/e)时,它们的图像有两个交点;而当底数a=e1/e时,它们的图像只有一个交点,当底数a∈(e1/e,+∞)时,它们的图像无交点。

事实上,当底数a=1时,它们就是两条直线y=1和x=1,也只有一个交点。

三、寻宝归来

通过不懈地努力,终于把这两个函数的图像交点情况弄清楚,由以上各种情况综合,即可详细得出函数y=ax与y=logax图像的交点个数条件,如下表:

四、收获感言

经过这一次认真地去探索一个看似简单的问题,使我感受到了解决一个科学问题的艰辛与快乐,其实生活中的许多事情也如此,看似简单与平凡,只要你能认真地去思考和勇敢地去面对,任何问题都有解决的办法,即使失败,也应坚信真理的存在,只有坚持不懈的努力,才能让你的灵感一次次地出现,只有付出更多的劳动,才能收获成功的喜悦。

参考文献:

[1]彭学军,高晓玲.“几何画板”在数学教学中的应用研究[J].四川教育学院学报.S1期

[2]姚淑华,李孝诚.几何画板在中学数学教学中应用模式的探讨[J].电脑知识与技术.30期

[3]符瑜.几何画板在中学数学教学中的应用研究[J].考试周刊.期

几何画板创新应用总结 第4篇

初中数学几何画板教学分析论文

摘要:随着科技的进步,几何画板成为数学课堂中一种非常重要的辅助教学手段,这在很大程度上提高了课堂教学效果。本文结合初中数学教学实践,对几何画板在课堂教学中的应用进行了探索研究,提出了几点教学建议。

关键词:初中数学;几何画板;应用

几何画板作为一种辅助教学工具,以其自身的优势在数学课堂中发挥了积极的作用。本文结合教学实践,对几何画板在初中数学教学中的应用进行了探究。

一、巧妙运用几何画板,激发学生的参与兴趣

在传统几何教学中,一般都是教师在黑板上画出一个几何图形,然后通过推理、验证、在黑板上画线等方式,来验证边、角、线段之间的关系,这样的过程实际上是让学生被动接受知识的过程,没有真正调动学生的主动性,更无法在学生脑海中形成直观、生动的印象,只能提高几何知识的抽象性,让学生对几何敬而远之,极大地压制了学生的学习兴趣。例如,在教学《图形的旋转》时,其中对于旋转性质的探究,有些教师先让学生结合教材内容,自主动手操作:先在硬纸片上挖出一个三角形的小洞,再挖一个小洞作为旋转的中心,然后在硬纸板下放一张白纸。第一次挖出的三角形为△ABC,围绕中心挖掉的三角形为△A′B′C′,之后再移开硬纸板,此时要求学生探究线段OA与OA′之间的`关系?∠AOA′与∠BOB′之间的关系?△ABC与△A′B′C′的形状与大小有什么关系?由于学生是在自主动手之后再进行度量探究的,所以中间可能会存在一定误差,很多学生会对探究结论产生怀疑。为了解决这一问题,教师可以利用电子白板与几何画板软件,在课堂上进行演示,先是用三角形工具构造一个三角形△ABC,再画出一个点O,将△ABC围绕点O旋转任意角度得出另外一个三角形△A′B′C′,之后借助度量工具将线段长度和角的度数度量出来,最后引导学生观察比较,对旋转的性质进行总结归纳,最后达到预期的教学目标。

二、精确绘制几何图形,充分展示几何内涵

由于几何画板所做出的图形具有很强的动态性,并且能够在运动过程中保持几何各个要素之间的精确关系,并且对数学知识和本质内涵进行精确的表达,所以教师要不断提高自身的信息技术素养,善于运用信息技术实施教学,全面提高课堂教学效率。例如,在教学二次函数时,在传统教学中,教师为了让学生掌握二次函数的顶点、开口方向、对称轴等要素的变化,需要黑板上画出抛物线的图像,并进行理论方面的讲解,还要画出各种不同的交叉图形。但是由于图形的抽象性和静态化,使得学生不能很好的理解与消化。此时,如果借助多媒体技术进行演示,则可以化抽象为形象,化静态为动态,用动态图形将抛物线形状随着系数的变化而变化的情况清晰呈现出来,从而降低知识的难度。同时,还可以让学生自主操作,这样不但可以激发学生浓厚的学习兴趣,而且可以开发学生的智力,让学生经历知识的形成过程,加深学生对知识的印象,提高学生对数学知识的应用能力。

三、引入数形结合思想,培养学生的空间想象能力

我国著名数学家华罗庚曾经说过:“数缺形时少直觉,形缺数时难入微。”数形结合思想是一种非常重要的学习思想,在众多数学思想方法中,数形结合为重中之重,无论在函数部分还是几何部分都有着非常重要的体现。在传统教学中,教师往往利用黑板作图法实施数形结合思想的导入,但是黑板作图呆板无趣,难以激发学生的学习兴趣。所以在信息技术背景下,教师可以运用几何画板,为学生提供充分展示数形结合思想的平台,让学生产生耳目一新之感。运用几何画板,可以测量各种数值,展示各种函数运算。当图形发生变化时,可以将与之相对应的数据展现在学生面前,这样的教学方法所取得的效果是传统教学模式无法比拟的。借助几何画板可以为数形结合思想提供便捷通道,不但能够绘制图形,还能提供动画模型,为图形的变化增加动感因素,增强知识的直观性和形象性,便于学生找到解决方法的有效途径。例如,在解决“二次函数y=ax2+bx+c的图像”的问题时,教师可以借助几何画板向学生说明y=ax2、y=ax2+k、y=a(x-h)2、y=a(x-h)2+k等函数图像之间的关系,帮助学生顺利解决疑惑与问题。

四、加强数学实验教学,鼓励学生自主研究

几何画板是一种简单易学的操作软件,教师可以利用空闲时间教会学生使用几何画板,让学生在课堂上自己动手操作,并在操作过程中观察、发现、感受、验证,促使学生在“做中学”,以激发学生的学习兴趣,提高学生的学习效率。为此,教师要积极打造适合进行实验的环境,加强数学实验教学,引导学生参与其中,激发学生的自主意识,提高学生的实践能力。在现行数学教材中,几乎每个章节都设置了数学实验,而数学实验则需要学生充分发挥自身的主观能动性,提高自身的动手能力。例如,先用几何画板画出一个任意三角形,再画出三角形的三条中线,并说出其中的规律,之后再拖动三角形其中一个顶点随意改变三角形的形状,看看这个规律是否发生改变。通过自主动手探究的过程,可以激发学生的自主意识,提高学生的观察能力和总结能力,让学生在研究过程中找到乐趣,树立学生的自信心,满足学生的成就感。总之,作为初中数学教师,必须要从思想上认识到几何画板的优势和作用,并熟练掌握几何画板的操作应用,根据数学教学内容的实际需要和学生的实际情况,合理有效地应用几何画板,提高初中数学教学的效果,促进学生更好地掌握和应用所学的数学知识,实现课堂教学目标。

参考文献:

[1]孙云飞.浅谈几何画板在函数教学中的应用[J].中国教育信息化,(8).

[2]胡广斌.巧借几何画板提高学生学数学的兴趣[J].改革与开放,2012(14).

[3]吴红军.“几何画板”在初中代数教学中应用例析[J].理科考试研究,(6).

[4]王洁.几何画板在数学课堂上的应用实例[J].新课程学习:中,(12).

[5]徐东.“平移”的教学分析与教学策略——用几何画板优化教学[J].数学教学通讯,2014(1).

几何画板创新应用总结 第5篇

传统的数学教学是教师用粉笔、直尺、三角板和圆规等工具在黑板作图,不仅图像不精确,而且又浪费大量的课堂时间,降低了课堂教学的效率,画出来的图像被固定化在黑板上,不能动态描述图像的运动、变化规律。结果往往是教师口干舌燥,学生感到枯燥无味。而借助于几何画板,我们比较容易地解决了上述问题。几何画板画图的方便性、准确性、图形的几何关系不变性和强大的度量、计算、解题功能,以及巧妙的图形变换和动画功能,正好可以满足数学教学中数形结合、图形变换、几何建构及教学问题情境的创设等需要。

在实际教学实践中,我们利用结合画板研究函数知识,收到了良好的效果,下面以正弦型函数为例,探讨利用几何画板研究函数的'一般方法:

一、动态演示正弦型函数y=Asin(ωx+φ)中A的作用

1.绘制函数y=sin(x)的图像;

2.创建新参数A并动画参数A;

3.绘制新函数y=Asin(x),动画参数A,学生可以直观地观察到图像随参数A改变而产生的变化,从而顺利总结出规律:A改变函数的振幅;

4.学生自己操作参数A,观察函数图像的变化。

二、动态演示ω的作用

1.创建新参数ω,并动画参数ω;

2.绘制函数y=4sin(ωx),并动画参数ω,随着参数ω的变化,图像会像弹簧一样压缩、扩张,能充分展示参数ω的作用:ω改变函数的周期。

三、演示初相φ的作用

1.创建参数φ;

2.绘制函数y=4sin(x+φ);

3.改变参数φ的值观察图像的变化,并总结规律:φ导致图像平移。

四、总结

有了上述动态直观的准备之后,学生可以自己操作参数,通过观察图像随参数的变化,系统总结出函数y=Asin(ωx+φ)的图像与函数y=sin(x)之间的关系,从而在更高层次上理解运用此规律。

利用几何画板,可以比较便捷地绘制出各种函数图像,又能根据自己的教学意图,随心所欲地修改解析式的参数,并且能让图像真正“动”起来。通过实践观察,发现解析式各个参数的变化对函数图像的影响及相互之间的联系,给学生的学习创设一个体验和理解数学的过程,使学生直观地感受到数形结合是探寻数学规律的绝佳方法。同时还可以用它来演示、验证学生的发现和猜测,加深学生对数学概念和性质的理解,激起学生对数学知识和数学规律学习和探索的欲望,提高他们学习的主动性和积极性,使学生获得积极的情感体验,并使之上升为理性认识,达到新课程下研究性学习的目的,最终提高了教与学的双重效率。

参考文献:

[1]刘胜利。几何画板课件制作教程[M].北京科学出版社,-03.

[2]覃桂燕。几何画板在三角函数教学中的应用。广西教育学院学报,(1)。

几何画板创新应用总结 第6篇

1数学教学中如何使用几何画板

在学习兴趣培养中的应用。

很多学生对初中数学的学习缺乏必要的兴趣,对数学课程有着十分明显的厌恶心态。之所以会出现这种情况,与初中数学知识内容的繁琐性、抽象性以及枯燥性有着十分紧密的联系。而为了让学生对数学知识有全新的认知,便需要使用几何画板软件,将一些看起来较为枯燥的数学知识通过全新的方式表现出来,从而获得更加良好的理解。

比如二次函数是初中数学教学中的重难点,很多学生会感到无所适从,为了让学生对二次函数有更加新颖的了解,便可以将函数通过图像的方式,在几何画板中表现出来,如下图所示:

在图一中,表现的是一个二次函数y=ax2+bx+c的相关参数变化情况,从图像中可以非常直观地了解到随着a、b、c三值的变化,函数图像所产生的相应变化,对于学生学习二次函数以及了解其本质有着十分重要的意义。通过这种方式,一方面让学生对枯燥的数学知识重新产生了浓厚的兴趣,另一方面也让教学变得更加规范,几何画板下的二次函数图像要比传统的黑板上作画精确许多。

帮助日常教学活动的进行。

几何画板在初中数学教学中,很多情况下具有不可替代的功能,特别是在一些几何部分的知识教学环节,能够起到很好的教学帮助作用。以初中数学中一个几何体上各条棱的平行与垂直关系为例,在传统的教学过程中,如果缺乏了相应的教辅示范工具,那么学生往往会很难理解教学内容,空间想象力不够丰富的学生甚至完全不能进入学习中。而几何画板则为这种情况提供了非常好的帮助,让教学工作得以顺利开展。如下图便是对正六面体的各条棱空间关系分析:

在图二中,将六面体的各个顶点分别命名为A、B、C、D以及A’、B’、C’、D’,通过几何画板中图形的旋转,将六面体全方位展示在学生面前,学生可以很直观地观察到每一条棱与其他棱之间的空间平行、垂直、异位等关系,从而为后续的进一步教学打下良好的基础。另外,在《图形的翻折运动》、《圆与圆的位置关系》等课程教学中,几何画板所具有的图形运动与转换功能均能够为教学工作带来极大的帮助,让教学的效率得到更大程度的提升。

2数学课堂创新教学

注重学生思维能力的培养,训练创新思维

数学教学既是一种数学知识的传授活动,也是学生数学思维的训练活动。传统的数学教学偏重于前,使学生在数学教学中成为接受前人所发现的数学知识的容器,把知识视为理所当然,不去考虑由来,这极大地限制了学生创新思维的发展。解决这一问题的关键是教育内容的革新,教育观念的更新和教学方法的创新。建构主义学习理论认为,学习不是一个被动吸收,反复练习和强化记忆的过程,而是一个以学生已有知识和经验为基础,通过个体与环境的相互作用,主动建构意义的过程。因此,在数学教学中,应通过对数学符号组合的分析、图形的证明、计算的变化等数学活动,使学生在逻辑思维、抽象思维、对称美欣赏、表象创造、联想变化等方面训练,从而培养学生思维的敏捷性、变通性、直觉性和独创性等创新思维的优良品质。教师不在于把知识的结构告诉学生,而在于通过对数学教材巧安排,对问题妙引导,创设一个良好的思维情境,引导学生发现,探究和总结,帮助学生在走向结论的过程中发现问题,探索规律,习得方法,引导学生主动地从事观察﹑实验﹑猜测﹑验证﹑推理与合作交流。

自主是创新精神的起点,在创造性的教学中应把学生视为主体,通过为学生提供自主发问、讨论交流尝试解决问题的机会,给学生充足自主学习的时间,并及时指导纠正学生“不当”为“探究”,促使学生从一开始就进入创新思维状态中,以探的学习方法,共同得到结论。打破“老师讲,学生听”的常规教学,变传授索者的身份去发现问题,总结规律。通过交流的方式分析问题,解决问题并能进行知识迁移,不仅能将“游离”状态的数学知识点凝结成优化的数学知识结构,而且能使模糊杂乱的数学思想清晰化和条理化,有利于思维的发展,同时还可以获得美好的情感体验。

抓住时机,因势利导,激起学生强烈的求知欲

思维能力的培养是数学教学的核心,把握好激发学生思维发展的时机,是引导学生进行创新思维的关键。我在教学“能被3整除的数的特征”这节课时,首先我问:“同学们,今天我们来做个游戏好吗?”听说做游戏,他们自然高兴极了,说:“老师,做什么游戏?”我说:“这个游戏就是你们随便说出一个数,我不用做除法计算,马上知道它能否被3整除。”学生一听,兴趣来了,兴致勃勃地说了很多数,我把这些数一一写在黑板上,一个一个加以判断。这时学生们对我真是佩服极了,但是也有不相信的,拿过练习本就开始除,结果还是老师说的一样。这时他们急坏了,急切地说:“老师,你是怎么知道的?

你有什么妙法呀!快点教给我们吧!”于是抓住这有利的教学时机,说:“好!这就是我们今天所要学习的能被3整除的数的特征。”学生情绪高昂地学习了新知识。快下课时,又布置了这样的作业,回家后和爸爸妈妈做这个游戏,看他们会怎样说。结果第二天,好多学生都讲了他们的爸爸妈妈表扬他的话。

3打造数学魅力课堂

运用语言、态势、板书等吸引学生注意力,掌握讲课节奏

在课堂教学中,通过语速的快慢、语音的抑扬顿挫、讲课节奏的张弛和语言的幽默来集中学生的注意力,其学习效果是不言而喻的。而恰当地运用态势、表情、手势、动作等把学生的视线吸引过来,给学生以动感,避免长时间不停歇地盯住黑板,也是消除学生疲劳、厌倦的一个有效方法。值得一提的是,在努力活跃课堂气氛的同时,还要注意维持课堂纪律,避免因个别学生违纪而影响了教学效果。而且,教师在上课前应有良好稳定的情绪,尽快进入讲课的角色,才能形成轻松活跃的课堂气氛。

开展评比活动,活跃课堂气氛

在平时自己的课堂上,我还没有意识到开展小组与小组、学生与学生之间的评比活动,对活跃课堂有多么重要。,通过多次听课交流,我知道了:开展评比,可使学生不仅学会合作学习,还会活跃课堂气氛。人人都渴望被表扬。初中学生好胜心强,乐于表现自己,应创造条件,让学生积极参与竞争,在竞争中提高学生对数学学习的兴趣。

提高练习质量,减轻学生负担

在教学过程中,在独立思考、尝试体验这一环节,我通常会安排三个层次的练习,即通过“围绕重点集中练、变换形式灵活练、新旧结合综合练”,将练习带进课堂.通常情况下,一节课的题目要分成适当的几个组,学一组练一组.练习的形式多样,自学、观察、实验、猜想、朗读、讨论、制作等都是必要的练习.通过练习,一方面让学生现场暴露知识和能力的缺陷;另一方面让学生在练习中产生困惑,学生练过之后就迫切希望老师讲解,他们希望知道正确的解题方法和解题思路.通过这种方式获得“成就感”和解决自己的困惑。此时,教师的讲解不宜面面俱到,只需有的放矢,重在点拨。“详讲”“略讲”或“不讲”要合理分配,突出重点。

4培养学生自主学习数学

要培养学生认真完成作业的习惯

作业是学生最基本、最经常的独立学习活动,是学生巩固知识,形成知识技能的主要手段。因此,必须养成认真完成作业的习惯。怎样才能养成此习惯呢?笔者认为应从以下二个方面进行:(1)养成专心作业和独立完成作业的习惯。课堂作业由于有老师督促检查,一般还比较认真,而在家庭作业中常常出现许多不良的习惯。例如,做作业时,做做玩玩,心神不定;拼命赶速度;依赖家长或照抄同学的作业等。这些都严重影响了作业的质量。为此,教师在布置家庭作业时,除对学生提出要求外,还应同家长取得联系,共同督促指导学生认真独立地完成家庭作业。(2)养成认真审题,仔细计算的习惯。审题是正确解题的前提,学生作业中的许多错误往往是没有认真审题造成的。

因此,要教给他们认真审题的方法。对于计算题,先要检查题目里的数字、运算符号有没有抄错,然后确定先算什么、后算什么,有没有简便的方法;对于应用题,特别是复合应用题要多读几遍,弄清已知条件和问题是什么,条件中哪些是直接的,哪些是间接的,再分析问题与条件、条件与条件之间有什么联系,最后列式;对于判断题,要弄清每一个字、词或符号的意义,并同已掌握的知识作比较,以便作判断。审题以后,要仔细地计算。如需打草稿的,草稿也要力求有条理、清楚,以便检查。

要培养学生敢于想的习惯

爱因斯坦说:“提出一个问题往往比解决一个问题更重要。”肯尼思?H?胡佛也说:“整个教学的最终目标是培养学生正确提出问题和回答问题的能力。任何时候都应鼓励学生提问,遗憾的是,提问课中常常是按照教师问学生答的反应模式进行。”这种用提问来代替学生的思维,让学生沿着教师的问题思路,到达知识彼岸,使学生学习始终被教师绑定,扼杀了学习的主动性与创造性。数学是思考性极强的一门学科,在数学教学中,必须使学生积极开动脑筋,乐于思考,勤于思考,善于思考,逐步养成独立思考的习惯。要使学生独立思考,首先,要选好思考的内容。思考内容一般在知识的关键处,通过设计提问的形式出现。

例如,教学分数乘以整数的法则时,可引导学生根据一系列问题阅读课本,并进行思考。如:2/9×3的意义是什么?2/9×3转化成2/9+2/9+2/9后怎样计算?根据是什么?当得到2/9×3=(2×3)/9后,将等式左边的算式与右边的结果比较,想一想,分数乘以整数应怎样计算?这样通过一个个问题,沟通了新旧知识的联系,使学生在教师的指导下,独立地掌握计算法则,培养了独立思考的习惯。为了养成独立思考的习惯,在提供思考内容的同时,还必须给予足够的思考时间。在一般情况下,当老师提出问题后,智力水平较高的同学能很快举手回答,这时为了照顾到中、下生,应该多留一些时间让大家思考,待已有相当多的同学举手后,再根据情况,让不同层次的同学回答。也可让那些没有举手的同学回答,让他们说说怎样想的,有什么困难,以促进他们开动脑筋想问题。不过在提问时,应尽量避免只与个别成绩好的同学对话,而置大多数同学于不顾。并且还要注意调动全班学生的积极性。其次,要鼓励学生质疑问难。因为任何发明创造都是从发现问题、提出问题开始的。如果学生在提问中提出一些离奇的问题,作为教师不应扼杀,而应加强引导、鼓励,并和同学一起分析、讨论。经过独立思考,学生就可能产生新的见解,有了见解就会有交流的愿望,有了交流又可以产生新的思考,从而使学生乐于思考,勤于思考,善于思考,逐步养成独立思考的习惯。