向量法电路总结 第1篇
1、VCR相量形式
电阻相量形式
时域形式
i(t) = \sqrt{2}Icos(wt+\theta)
u_{R} = \sqrt{2}Icos(wt+\theta)R
相量形式
\bar{I} =I\angle\theta_{i}
\bar{U} =RI\angle\theta_{i}
相量关系 \bar{U} =R\bar{I}
电容相量关系
时域形式
u(t) = \sqrt{2}ucos(wt+\theta_{u})
i_{c} = Cdu/dt = \sqrt{2}WCUcos(wt+\theta_{u}+\Pi/2)
相量形式
\bar{I} =WCU\angle\theta_{u}+\Pi/2
\bar{U} =U\angle\theta_{u}
相量关系 \bar{U} =-j1/wc\bar{I} = jX_{c}\bar{I}
有效值关系: I_{c} = WCU
相位关系: \theta_{i} = \theta_{u} +\Pi/2
电感相量关系
时域形式
i(t) = \sqrt{2}Icos(wt+\theta_{i})
U_{L} = Ldi/dt = \sqrt{2}WLIcos(wt+\theta_{i}+\Pi/2)
相量形式
\bar{U} =WLI\angle\theta_{i}+\Pi/2
\bar{I} =I\angle\theta_{i}
相量关系 \bar{U} =jWL\bar{I} = jX_{L}\bar{I}
有效值关系: U_{c} = WLI
相位关系: \theta_{u} = \theta_{i} +\Pi/2
向量法电路总结 第2篇
di/dt =dRe(\sqrt{2}\bar{I}e^{jwt})/dt=Re(\sqrt{2}jw\bar{I}e^{jwt}) = jw\bar{I}
\int_{}^{}idt =\int_{}^{}Re(\sqrt{2}Ie^{jwt})dt=Re(\sqrt{2}\bar{i}/jwe^{jwt}) = \bar{I}/jw
正弦函数 \Leftrightarrow 相量
时域 \Leftrightarrow 频域
正弦图\Leftrightarrow相量图
范围:实用同频率正弦量时不变线性电路
分析正弦稳态电路
向量法电路总结 第3篇
W = RI^{2}T =\int_{0}^{T}Ri^{2}(t)dt
I = \sqrt{\int_{0}^{T}i^{2}(t)dt}/T
I=1/\sqrt{2}I_{m}
正弦量 \Leftrightarrow 复数
F(t) = \sqrt{2}Ie^{j(wt+\theta)}
F(t) = \sqrt{2}Icos(wt+\theta)+j\sqrt{2}Isin(wt+\theta)
Re(F(t)) =\sqrt{2}Icos(wt+\theta)
F(t) = \sqrt{2}Ie^{j(wt+\theta)} = \sqrt{2}Ie^{j(wt)}*e^{j(\theta)}
\bar{I} = I\angle\theta
\sqrt{2}Icos(wt+\theta)\Leftrightarrow I\angle\theta
向量法电路总结 第4篇
复数表示形式
F = a+jb
F = |F|(cos\theta+jsin\theta)
F = |F|e^{j\theta}
F = |F|\angle\theta
|F| = \sqrt{a^{2} + b^{2}}
旋转因子
e^{j\theta} = cos\theta + jsin\theta
\theta = \Pi/2
e^{j\Pi/2} = j
\theta = -\Pi/2
e^{j-\Pi/2} = -j
\theta = \Pi
e^{j\Pi} = -1